{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 18 - Stata Workflow Guide\n",
"\n",
"Marina Adshade, Paul Corcuera, Giulia Lo Forte, Jane Platt \n",
"2024-05-29\n",
"\n",
"## Prerequisites\n",
"\n",
"1. Knowledge of the content of the previous modules: macros, opening\n",
" data sets, creating graphs, regression analysis.\n",
"\n",
"## Learning Outcomes\n",
"\n",
"1. Develop foundational skills and practices for workflow management in\n",
" research and data applications.\n",
"2. Improve coding style, especially for collaborative settings.\n",
"3. Use the secure file-hosting service UBC OneDrive to store, share,\n",
" and synchronize folders.\n",
"4. Implement conditional operators to automate workflow processes.\n",
"\n",
"## 18.0 Intro"
],
"id": "7e0aac21-9e56-4d97-8b96-39753e9611aa"
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import stata_setup\n",
"stata_setup.config('C:\\Program Files\\Stata18/','se')"
],
"id": "5be2e723"
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
">>> import sys\n",
">>> sys.path.append('/Applications/Stata/utilities') ## make sure this is the same as what you set up in Module 01, Section 1.3: Setting Up the STATA Path\n",
">>> from pystata import config\n",
">>> config.init('se')"
],
"id": "646f70e5"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Significant credit for the content of the module must go to Asjad Naqvi\n",
"and this very useful post on [The Stata Guide on\n",
"Medium](https://medium.com/the-stata-guide/the-stata-workflow-guide-52418ce35006).\n",
"\n",
"## 18.1 Introduction to Workflow Management\n",
"\n",
"Structuring our files and folders early on will save us a lot of time\n",
"and effort throughout our research projects. The approach covered in\n",
"this notebook will make it easier for us to keep track of our progress\n",
"and reduce our workload later on. This approach will be particularly\n",
"important if we are working in a group, with several co-authors on one\n",
"project.\n",
"\n",
"In this module, we will discuss how to manage files and scripts as part\n",
"of the research workflow. We will also cover how to stylize code to make\n",
"it easy to read and replicate. While these are not strict rules,\n",
"consider them guidelines for research and data management.\n",
"\n",
"## 18.2 Setting Up the Directory\n",
"\n",
"### 18.2.1 Main Folder\n",
"\n",
"Over the course of a research project, we are likely to accumulate\n",
"numerous files for our project, including raw data files, do-files,\n",
"tables, graphs, and figures. In fact, there are often many versions of\n",
"each of these files as well! We will always want to start by creating a\n",
"main folder, or a “root” folder, where *all* of our project files and\n",
"folders will be organized. If we are working with other people, we will\n",
"want to create these folders on a shared drive such as [UBC Microsoft\n",
"OneDrive](https://lthub.ubc.ca/guides/microsoft-onedrive-student-guide/).\n",
"More on this in a moment.\n",
"\n",
"Within the main folder, we’ll want to sort all of our files into\n",
"sub-folders similar to the structure shown below:\n",
"\n",
"\n",
"\n",
"Each sub-folder consists of a specific category of files and is numbered\n",
"to indicate the workflow:\n",
"\n",
"- **data:** contains all the data files;\n",
"- **do_files:** contains all the Stata do-files used to process, clean\n",
" and analyze the data files;\n",
"- **log_files:** contains all the Stata log-files;\n",
"- **tables:** contains all the regression tables, summary statistics,\n",
" etc.;\n",
"- **figures:** contains all the graphs and figures;\n",
"- **literature:** contains papers and documents related to the\n",
" literature review;\n",
"- **paper:** contains word documents or LaTeX files relating to the\n",
" written part of your paper;\n",
"- **slides:** contains presentation slides.\n",
"\n",
"**Note:** We’ll want to avoid spaces, special characters, or capital\n",
"letters in our folder or file names. If we need to use spaces, we can\n",
"use underscores `_` . We will also want to number our files to indicate\n",
"our workflow.\n",
"\n",
"### 18.2.2 Do-files Folder\n",
"\n",
"It’s almost never a good idea to use one do-file for an entire project.\n",
"Instead, we will want to create different do-files for different tasks\n",
"and add descriptive labels to reflect our workflow. As mentioned in the\n",
"previous section, we should prefix our files with numbers to align with\n",
"the workflow sequence.\n",
"\n",
"\n",
"\n",
"In the image above, the first do-file, `1_build_data.do`, cleans the raw\n",
"data and generates core variables that will be used in subsequent\n",
"scripts. The second do-file, `2_descriptive.do`, generates descriptive\n",
"statistics and relevant figures. The third do-file, `3_results.do`, runs\n",
"the final regressions and generates regression tables. The master\n",
"do-file, `0_master.do`, runs all these other do-files. We will discuss\n",
"its role in detail in a moment.\n",
"\n",
"**Note:** Some researchers prefer to use different do-files for\n",
"different figures and tables, which is completely fine as long as the\n",
"files are labeled well. If we want to generate different tables and\n",
"figures within the same do-file, we should be sure to write them into\n",
"separate code blocks within a do-file so that they can be easily\n",
"distinguished.\n",
"\n",
"### 18.2.3 Choosing Good File Names\n",
"\n",
"While you are welcome to use your own naming conventions, it can be\n",
"helpful to prefix your file names with numbers to align with your\n",
"workflow; it is also a good idea to make these file names post-fixed\n",
"with version numbers. Version numbers can be `_v1`, `_v2`\n",
"(i.e. “ECON490_logfile_v12.txt”) or they can be indicated by dates\n",
"(i.e. “Thesis_logfile_230430.txt”).\n",
"\n",
"**Note:** Following the yymmdd (year month date) format when using dates\n",
"will automatically sort our files with the latest version at the top.\n",
"Other date formats will not sort the files in the correct order and thus\n",
"defeat the purpose of adding a post-fixed version number.\n",
"\n",
"As we make progress with our project, we might find ourselves collecting\n",
"many versions of the same files. As older versions become redundant, it\n",
"is best to delete them or move them to a temporary folder. Creating a\n",
"temporary folder for old do-files, tables, documents, etc. can be\n",
"helpful in keeping our main folders neat, especially if we are hesitant\n",
"to delete them or if we are susceptible to digital hoarding (like many\n",
"of us).\n",
"\n",
"## 18.3 Setting Up the Master Do-File\n",
"\n",
"### 18.3.1 Compiling Do-Files with the Master Do-File\n",
"\n",
"We can think of the master do-file, `0_master.do`, as a “compiler”: it\n",
"runs all, or some, of the do-files for everything in our project. This\n",
"master do-file file should be structured something like this:"
],
"attachments": {
"img/fig1-stata-dir.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAogAAAO0CAYAAAAmhsfYAAAMaWlDQ1BJQ0MgUHJvZmlsZQAASImV\nVwdYU8kWnltSSWiBCEgJvQkivUgJoUUQkCrYCEkgocSYEFTsqKjg2kUUK7oqouhaAFlUxF4Wxd4X\nCwrKuqiLoqi8CQnouq9873zf3PnvmTP/KXfm3jsAaPXwpNIcVBuAXEmeLC48mDU2JZVFeg6IAAFk\nwAImPL5cyo6NjQJQBvq/y/tb0BbKdScl1z/H/6voCoRyPgDIeIjTBXJ+LsSNAOAb+VJZHgBEpd5y\nap5UiedCrCeDAUK8RokzVXi3EqercEO/TUIcB+KrAJBpPJ4sEwDNB1DPyudnQh7NzxC7SARiCQBa\nwyAO4It4AoiVsQ/LzZ2sxGUQ20F7KcQwHuCd/h1n5t/40wf5ebzMQazKq1/IIWK5NIc3/f8szf+W\n3BzFgA8b2GgiWUScMn9YwzvZkyOVmAZxpyQ9OkZZa4h7xAJV3QFAqSJFRKLKHjXmyzmwfoAJsYuA\nFxIJsTHEYZKc6Ci1Pj1DHMaFGK4WdJo4j5sAsQHEi4Xy0Hi1zVbZ5Di1L7QmQ8Zhq/XnebJ+v0pf\njxTZiWw1/1uRkKvmxzQLRAnJEFMhtsoXJ0VDrAmxszw7PlJtM7JAxIkesJEp4pTxW0EcJ5SEB6v4\nsfwMWVic2r44Vz6QL7ZVJOZGq/HBPFFChKo+2Gk+rz9+mAt2VShhJw7wCOVjowZyEQhDQlW5Y+1C\nSWK8mqdHmhccp5qLU6U5sWp73EKYE67UW0DsLs+PV8/Fk/Lg4lTx4xnSvNgEVZx4QRZvVKwqHnwF\niAIcEAJ3nwK2dDAZZAFxc2dtJ7xTjYQBHpCBTCAETmrNwIzk/hEJvMaDAvAHREIgH5wX3D8qBPlQ\n/2VQq7o6gYz+0fz+GdngOcS5IBLkwHtF/yzJoLck8AxqxP/wzoOND+PNgU05/u/1A9pvGjbURKk1\nigGPLK0BS2IoMYQYQQwj2uNGeADuh0fBaxBsrrg37jOQxzd7wnNCC+EJ4SahlXB3krhQ9kOUo0Er\n5A9T1yL9+1rgNpDTAw/G/SE7ZMaZuBFwwt2hHzYeCD17QC1HHbeyKqwfuP+WwXdPQ21HcaGglCGU\nIIrdjzM1HTQ9BlmUtf6+PqpY0wfrzRkc+dE/57vqC2Af+aMlthg7hJ3DTmIXsAasFrCwE1gddhk7\npsSDq+tZ/+oa8BbXH0825BH/w9/Ak1VWUu5S5dLh8lk1lieclqfceJzJ0ukycaYoj8WGXwchiyvh\nOw9jubq4ugKg/NaoXl/vmP3fEIR58Zuu8CEA/il9fX0N33RRcP8ebofbv/ObzrYKAPpxAM4v5Ctk\n+SodrrwQ4FtCC+40Q2AKLIEdzMcVeAI/EARCwSgQAxJACpgIoxfBdS4DU8FMMA8UgRKwAqwFG8AW\nsB3sBvvAQVALGsBJcBZcAlfBTXAfrp428Ap0gfegF0EQEkJHGIghYoZYI46IK+KNBCChSBQSh6Qg\naUgmIkEUyExkPlKCrEI2INuQSuQX5ChyErmAtCB3kcdIB/IW+YRiKA3VQ01QG3Q46o2y0Ug0AZ2A\nZqJT0AJ0AboMLUMr0L1oDXoSvYTeRFvRV2g3BjANjImZY06YN8bBYrBULAOTYbOxYqwUq8CqsXr4\nnK9jrVgn9hEn4gychTvBFRyBJ+J8fAo+G1+Kb8B34zX4afw6/hjvwr8S6ARjgiPBl8AljCVkEqYS\nigilhJ2EI4QzcC+1Ed4TiUQm0ZboBfdiCjGLOIO4lLiJuJ/YSGwhPiV2k0gkQ5IjyZ8UQ+KR8khF\npPWkvaQTpGukNlIPWYNsRnYlh5FTyRJyIbmUvId8nHyN/ILcS9GmWFN8KTEUAWU6ZTllB6WecoXS\nRuml6lBtqf7UBGoWdR61jFpNPUN9QH2noaFhoeGjMUZDrDFXo0zjgMZ5jccaH2m6NAcahzaepqAt\no+2iNdLu0t7R6XQbehA9lZ5HX0avpJ+iP6L3aDI0nTW5mgLNOZrlmjWa1zRfa1G0rLXYWhO1CrRK\ntQ5pXdHq1KZo22hztHnas7XLtY9q39bu1mHojNCJ0cnVWaqzR+eCTrsuSddGN1RXoLtAd7vuKd2n\nDIxhyeAw+Iz5jB2MM4w2PaKerR5XL0uvRG+fXrNel76uvrt+kv40/XL9Y/qtTIxpw+Qyc5jLmQeZ\nt5ifhpgMYQ8RDlkypHrItSEfDIYaBBkIDYoN9hvcNPhkyDIMNcw2XGlYa/jQCDdyMBpjNNVos9EZ\no86hekP9hvKHFg89OPSeMWrsYBxnPMN4u/Fl424TU5NwE6nJepNTJp2mTNMg0yzTNabHTTvMGGYB\nZmKzNWYnzF6y9FlsVg6rjHWa1WVubB5hrjDfZt5s3mtha5FoUWix3+KhJdXS2zLDco1lk2WXlZnV\naKuZVlVW96wp1t7WIut11uesP9jY2iTbLLKptWm3NbDl2hbYVtk+sKPbBdpNsauwu2FPtPe2z7bf\nZH/VAXXwcBA5lDtccUQdPR3FjpscW4YRhvkMkwyrGHbbiebEdsp3qnJ67Mx0jnIudK51fj3canjq\n8JXDzw3/6uLhkuOyw+X+CN0Ro0YUjqgf8dbVwZXvWu56w43uFuY2x63O7Y27o7vQfbP7HQ+Gx2iP\nRR5NHl88vTxlntWeHV5WXmleG71ue+t5x3ov9T7vQ/AJ9pnj0+Dz0dfTN8/3oO+ffk5+2X57/NpH\n2o4Ujtwx8qm/hT/Pf5t/awArIC1ga0BroHkgL7Ai8EmQZZAgaGfQC7Y9O4u9l/062CVYFnwk+APH\nlzOL0xiChYSHFIc0h+qGJoZuCH0UZhGWGVYV1hXuET4jvDGCEBEZsTLiNteEy+dWcrtGeY2aNep0\nJC0yPnJD5JMohyhZVP1odPSo0atHP4i2jpZE18aAGG7M6piHsbaxU2J/HUMcEzumfMzzuBFxM+PO\nxTPiJ8XviX+fEJywPOF+ol2iIrEpSStpfFJl0ofkkORVya1jh4+dNfZSilGKOKUulZSalLoztXtc\n6Li149rGe4wvGn9rgu2EaRMuTDSamDPx2CStSbxJh9IIaclpe9I+82J4FbzudG76xvQuPoe/jv9K\nECRYI+gQ+gtXCV9k+GesymjP9M9cndkhChSVijrFHPEG8ZusiKwtWR+yY7J3ZfflJOfszyXnpuUe\nlehKsiWnJ5tOnja5ReooLZK2TvGdsnZKlyxStlOOyCfI6/L04E/9ZYWdYqHicX5Afnl+z9SkqYem\n6UyTTLs83WH6kukvCsIKfp6Bz+DPaJppPnPezMez2LO2zUZmp89ummM5Z8Gctrnhc3fPo87Lnvdb\noUvhqsK/5ifPr19gsmDugqcLwxdWFWkWyYpuL/JbtGUxvli8uHmJ25L1S74WC4ovlriUlJZ8Xspf\nevGnET+V/dS3LGNZ83LP5ZtXEFdIVtxaGbhy9yqdVQWrnq4evbpmDWtN8Zq/1k5ae6HUvXTLOuo6\nxbrWsqiyuvVW61es/7xBtOFmeXD5/o3GG5ds/LBJsOna5qDN1VtMtpRs+bRVvPXOtvBtNRU2FaXb\nidvztz/fkbTj3M/eP1fuNNpZsvPLLsmu1t1xu09XelVW7jHes7wKrVJUdewdv/fqvpB9ddVO1dv2\nM/eXHAAHFAde/pL2y62DkQebDnkfqj5sfXjjEcaR4hqkZnpNV62otrUupa7l6KijTfV+9Ud+df51\nV4N5Q/kx/WPLj1OPLzjed6LgRHejtLHzZObJp02Tmu6fGnvqxukxp5vPRJ45fzbs7Klz7HMnzvuf\nb7jge+HoRe+LtZc8L9Vc9rh85DeP3440ezbXXPG6UnfV52p9y8iW49cCr528HnL97A3ujUs3o2+2\n3Eq8def2+NutdwR32u/m3H1zL/9e7/25DwgPih9qPyx9ZPyo4nf73/e3erYeexzy+PKT+Cf3n/Kf\nvnomf/a5bcFz+vPSF2YvKttd2xs6wjquvhz3su2V9FVvZ9EfOn9sfG33+vCfQX9e7hrb1fZG9qbv\n7dJ3hu92/eX+V1N3bPej97nvez8U9xj27P7o/fHcp+RPL3qnfiZ9Lvti/6X+a+TXB325fX1SnozX\n/yuAwYZmZADwdhf8T0gBgAHPbdRxqrNgvyCq82s/Av8Jq86L/eIJQDXslL/xnEYADsBmMxdyw3vl\nL3xCEEDd3AabWuQZbq4qLho8CRF6+vremQBAqgfgi6yvr3dTX9+XHTDYuwA0TlGdQZVChGeGrQFK\ndNNAMBf8IKrz6Xc5/tgDZQTu4Mf+X6HkkC/R2q9qAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEA\nAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAA\nAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAACiKADAAQAAAABAAADtAAAAABBU0NJSQAAAFNjcmVl\nbnNob3Sku05IAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAA\nAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUg\nNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIv\nMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgog\nICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAg\nICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj45NDg8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgog\nICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+NjQ4PC9leGlmOlBpeGVsWERpbWVuc2lvbj4K\nICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4K\nICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CnuLIgYA\nAAAcaURPVAAAAAIAAAAAAAAB2gAAACgAAAHaAAAB2gAAeVGSi17VAABAAElEQVR4AeydB4AUxbaG\nD8jCM6FgAkEBCYI5XAXFAAiKiImkIqAgouQcJOeMJAElShAUMYOiqIA5cc2oKAgiKKigKHiV9Or0\n0k1P78zu7EzP7ISv7pVOVdVVX/VO/32q6lS+gyYIAQIQgAAEIAABCEAAAocI5EMg8ixAAAIQgAAE\nIAABCLgJIBDdNNiHAAQgAAEIQAACEBAEIg8BBCAAAQhAAAIQgEAAAQRiAA4OIAABCEAAAhCAAAQQ\niDwDEIAABCAAAQhAAAIBBBCIATg4gAAEIAABCEAAAhBAIPIMQAACEIAABCAAAQgEEEAgBuDgAAIQ\ngAAEIAABCEAAgcgzAAEIQAACEIAABCAQQACBGICDAwhAAAIQgAAEIAABBCLPAAQgAAEIQAACEIBA\nAAEEYgAODiAAAQhAAAIQgAAEEIg8AxCAAAQgAAEIQAACAQQQiAE4OIAABCAAAQhAAAIQQCDyDEAA\nAhCAAAQgAAEIBBBAIAbg4AACEIAABCAAAQhAAIHIMwABCEAAAhCAAAQgEEAAgRiAgwMIQAACEIAA\nBCAAAQQizwAEIAABCEAAAhCAQAABBGIADg4gAAEIQAACEIAABBCIPAMQgAAEIAABCEAAAgEEEIgB\nODiAAAQgAAEIQAACEEAg8gxAAAIQgAAEIAABCAQQQCAG4OAAAhCAAAQgAAEIQACBmIfPwMGDByVf\nvnx5WAJuDQEIQAACEIAABLISQCBmZRLTM598/LG89toK2fzDD/LXX3/JySefIs3vuUfKl69g3Xff\nvn2yefMPUrp0maDi8a0335Qvvvjcint9nRukVKlSMS0vmUMgEQns379fjjjiiEQsGmWCAAQgkBIE\n8kQgbt+2TXbv2e0ALF78VPm///s/5zjSnZ9//ln+/nuPk7xMmTOc/bzeUWvh7FkzRAWeN7Tv0Eku\nuvhi2b37L3mgZw/5888/LYHYf+CgLCJxwfy58tqrr1pZdOrcRc6/4EJvdil5rGxmPPKI3H5HYylW\nvHhK1jHZK/XZZ5/JE48vcqpR5owzpGXLe53jaHYOHDggTy1ZYj6uXpPvv98gv/76q5xwwglyyaWX\nyrBhw62sx49/UH795RfnNi3vbSVlypRxjtmBQKIT4BlO9BZKr/LliUCcNGG8fPzxfx3SN950s9Sr\n38A5jmRHhWGXTh3lf//7n5N8ztz5zn5e76ioU3Gn4cgjj5SqV1wpRYoUkQ3r10uNmjXlrLPOlnfe\nfltmTH/YKergIcPktNNPd451J10F4rZtP8vI4cMsFj179c4zkaiWq6+//jqgTU4++WQ56aSTAs6F\nOvj222/l33//dS6fcsopcuKJJzrHoXZ+++030Q8gOxQqVFDKlStvHybE9uWXX5beD/RyynLxf/4j\n06fPcI4j3fn+++/lgV49Rdl5wxlGhD655CnrdL16t8qmjRudKNNnzJSLzYdXuobff/9dtmzZkuvq\nly1b1pcP9lzfmATCM8xDkEgEEkIgHnPssTLuwQlSsGDBiNm89OIyWfzE4wHpE0UgusVrRkaGDB46\nXIoVKxZQVj34/fed0r1rF9FuZhUNo8aMk/z58wfES1eBqBB+/uknGTUy01qUVyJRLcHXXltLdhjB\nZofatWvLsOEj7MOQ2127dsk1NaqLWsPscMMNN8jgIUPtw5DbwYMGyXPPPetcr1a9uowb96BznAg7\nsRCI//zzjzS5s7Fs2LAhaBURiEGxWCefffZZGTJ4UOgIIa48tnChVKxYKcRVTseSAAIxlnTJO7cE\nEkIgaqHvbt5Crq5WPbflt+KrVad7ty6yc8eOgPSJIhC/XbdOhg8bYpXtiiuvlHtatgoop/tg1x9/\nyLpv18l5550fVDCns0BUTokgEvv36yvLli1zmk2th8tffsU5DrXz6ooV0tMMIXAHtSC++NJy96mg\n+7fcfJMZm7rZufbAA72lQcOGznEi7MRCIE6ePEkenTPHqZ6OO2x8551yWZXLZNefu+THzT9K8xYt\nrOu8XB1M1g4CMZBHMhzxDCdDK6VPGfNcIJ5gLGW/mfFEp5YoYawwIyMi/+6778j0h6dZadXypuOT\nNCSKQFy9aqV5yc22ynTb7XdI7evrWPuR/JPuAlGZqUgcOeJQd7MRSjqGNZ5h+UsvSZ8+vQNu+cyz\nz8npnuEAARHMgdcKaF/PKa0+z9cZq6U7PPf8C1KyZEn3qTzfj4VAbNa0iXz55ZdO3dq2bSctzKSu\nYIGXayAVBGIgj2Q44hlOhlZKnzLmuUC89NLK8sEH71vEu3brIeece26u6Q8wFp0fftgkKjaLHH+8\nfPfdd1YeiSIQnzddg888nTlOSq2HakWMNCAQM8n99NNWGTXiUHdznEXizp07pVbNa0S7m+3Qr19/\nueXWW+3DoNvra18n27dvz3Ktd58+Uj+bMbgrVrwivXr2dNKVKFFSnn/hBec4UXb8FojaFX9F1ctF\nu5nt8KIR56ecknV4hl7n5WpTytx6BaI+N+3atwuMFOSoirHOFi5cOMgVTsWaAM9wrAmTf24I5LlA\n1JmGM2dMt8p87rnnSZdu3XNTfvlq7VoZPSpz/NcNdW+UNWs+sixMmkkiCkStr05QiTQgEA+Ty0uR\n2LTJnbLWPHt2qGNcDg0ZGnos4Xrz0dKo0eEuYfV/aQvMWrWulZGjRtlZZdmOGjlSFi9+wjnfoEED\neaB3H+c4UXb8Fog6yULHbNpBx+O+/8GHWcbl2td5udokMrdegXjWWWfJ/AWPBUbiKKEI8AwnVHOk\nfWHyXCCOHjtOJhr3FDrbTl+aQ00386mnht9lOH7cWPnss08tn2ia19Ahg52xiAjEw8+3uonZ+P1G\n2bXrDylhuiZPPbWEFChQ4HCEMPbUb6POpP3ll+2yf99+KXxcYat7N9wZvGHcItdR8kokTp0yRWbN\nmumUN6exhPPnzZMJZva+BnXPctxxxzkTL3Q2+4pXX8vi0sjO/LZGjYxV/PAM3rHjxkn16jXsywmz\njbVA1OdVBWKowMs1kAwCMZBHMhzxDCdDK6VPGfNcII4aPdZyGzJndubLtpqZqHKXmbASTthqRGXf\nPg9YlpjKVarI/a3bSod2bSw/gpreLRDVrY6619Gggmb02PBmgD40eaKs+egjK12nLl3l/PMvsPZz\n+mfhgvmiXYM5heo1akizu5pb0f4y/g/bm/JrUEfZAwYNtvbd/+TWgqjjH5ctXWqJOnc+OthfXeu0\naNlSjj++iPtSlv2Nxs2IzhL/6KMPA2bg2hFVcHbu0s0SPva5eG7zQiR+8snHcs+hyRF2XbXbV7vx\ngoU2re+X99/PHEpRuXJlOeqoo2XlytedqIsXPylly5Vzju0dnbRUw1jRbGujttvrK1fJMcccY0cJ\nutX4P5mxmuoiRmdcn24cquuM32ONx4Bow969e2X9+u9kz56/5cwzz5Sjjz7ayjKZBeKePXssVhs3\nfm/qc4zFSsd4er0IRMsunukTXSD+/fff1genPqc69KJo0SJy2mmnm7+hEkEn6OWGnea5zkwO1OEg\nxY3HiErGehqq23yHmdyorqv0w7dYseJS3vwdFjUfcdEEdUv1zTffWHmqwUNnhYfztxeNQNSxyl9/\n9ZW1AEO58uWsd0hujQDR1Jm0qUcgzwXiiFFjLJcuXTt3NNatXdYPw7jxE3N8AWpTqKh8Y/Vqq1X6\nDRhoftTLSrs29xuH07utc26BeMDMdO7apZNxJfO7da1PvwHGj1zWF7J18dA/anXr1KG95XamaNET\nZIxxKxLuCyOvBaL6g3x0zix5/7333FXKsq8/Wvfed79o936w8OEHH8jD06YEFYbu+IOMq5bTT8+7\nVV3iLRJ15nyN6tWsH2ObQ/8BA+Tmm2+xD52tvgg1ru3/8O67m0tGwQzj8zJzaIVG7N69h3ECfoeT\nxt5ZbZ7vLp072YfmA+V8mT3nUefYu6PCddLEidbLye0T1I6nH0c33nST3GuGOmTnVmr4sGHy1FNL\n7GTSpm1bueeelpaj9+HDh4v6pdRQqnRpefrpZ6z9cAWivpCbmJnIdh6auLTJ59G58ywxqy/JcMOS\np552nGHn9uWqfB555GF5efnLAWWx712wYCGpVKmidDXDXs4++2z7tLPVD8dWre51jvVvScV7qN8I\nddfzlXmB22GCaacrr7zKPgzY1r7uWiMuMp1+qwDXfHP7so9WIGr7NKhf33wIHF58oO6NN8qgIB+u\nWngVRTrb3h1f42oaO+jfzerVq+TJxYvlww8/dD587Ou6LVSokLRocY/5cL4r5DPqfdb0o2vqtIet\nnqiRZmzyu+++G5D3UYZh0yZNpeW99zrto++CcWPHyiuvvGz9xrvL8J9LLpGhQ4eF9G8a6u9jm1kE\nYtzYMbJq1SrRurqDPuP9zXtK/4ZDhdw+w/qb8tDkybJ8+UsWf3e+6lJNF2Do339AULdq7rjsQyAY\ngYQQiOoT8Llnn5Fnn3naKmP9Bg3Nj8pNwcrrnFPLigq+ffv2WcvU9e7bz7oWSiDqxSVPLjbWtMzB\n/dfUrCVNmjZz8gu28/prr8r8eXOtSzffcquZhFAvWLSg59au/dJx2rvWzMK0l8fTSTmly5Rx0qio\nOvucc6xjvyyIKoYHDxogmzZtsvJVUVDPMFUHuGq5+tG4S3nVWDfVIqihkFnFZrTxuej9wlYn3uqe\nR3/o9OWkbVLZDGAvWrSo/GnE/Hbzxf3F55/Lytdfl169e+epQNR6xFskdu/WTV5//TW9tRXq1q0r\ngwYPsQ+dra6e07FjB+dYX2T6431vy8OzcatVq2Z8gWZauJ2IZkdXVlgwf75z6v77W8u9rbK6SdKP\nq0mTJpq/oWcCXoxOQs+OrjAy0PhWPOec4JPCgr0ANW77dm0DXny5FYj6LN1/Xyv573//65RIu9jn\nmi54tb6qo+t4CMS333pLRhghoZamnIIKvqbmt+L+1q0DBIvWxfuREMqHYLCJTU2aNpXOZjUkb1B3\nRiq07FCzVi0ZNWq0fRj2NlqBqDdaZHwijjWCxw7K4vEnFlu/JfY5ezt06BAzGe9p+1CqVq0qkyY/\n5BzrToP69SxLbcDJEAf6jC54bGFQp93BBGKHjh2l9f33W4aGEFlaH3D6IadDmjTuli0/hopqLWRg\nP5feSMH+Pi677HLp2KG96AdQqKC/o93MB0dDM2wkWMiNQNRhJ73N766Ob84u6O96v/79TU/ENdlF\n4xoEshBIGIGoy8upFVG7r443XZ5jzctSu9NChaeNdeOF55+zLrdr31F01QYN2QlE7cbo1aOb9QLV\nP5rxEyc7X5NWYs8/QwYPtFY60bGRWh61IkYS3LOYs5uk4pdA1K5ttWBq0Fnhbdt1CPoj6xbMNc1E\niTvNF7Y7LFr4mLzycqaPPu0G1+7wYEEtMfnMBRWaeR22bjWzm40zbS1PD7PiSm7Gs+a27E+bmenD\nXBNTipslAJcuezFLNmNGj5LHH3/cOq/WkVWr37Ceu+rVrnasLaGsT143L2plO9cz019n+d5mJsC4\n/STahdCuaLUUBntp6d/XwkWLgq7I4n0BtrrvPvMR91wWS1tuBeJoMxnnCZdDe7XSPWIsqeedd55V\n5HgIRBXRQ8xYZW9Q8aOr4mhXnX54ekOwyUQ6u9w9lEQFnwo/b3jRDNHo17dvwOlQk0a8ws5rhQvI\nJJsDbz6h7pdNFlbPwV3NmgZMyAr2MaNi5Y7bb3d6GtTqqSvc6Nhcd1BB/Yf5uNegv6v691m+fHnr\nd1+7ZJW9O6hLI3Vt5A1egVipUiVLGNorx+h91QLrdkpv5zF16jSZOnWq89GuZT3CCDc1OnjDLbfc\nYsTVAO9p8+EcaGFvYn47X311hbPakT7XRYocb/5etmVJqyemTJkqVS67LMu1cAWiWqJbNL/b6ZXQ\njI43Hjz09/7I/zvSai+3+NVne5H5DSpXrnyWe3ICAqEIJIxA1ALONb4CV5kxcxpaGUuJfpEFC2pW\nVzGpkyZOOulks+LIWGeAf3YCUfMaPXKE6ebJnH2anVsd9bX3QK8e1u3PM10COsYu0hBPgahCW0Ww\ndvPoCjXDho0wk0mOC1p05ahx1bqhX7ZjzWo2OnnCDgMH9LMsOno8Ztz4sJaEs9Pm1TaeAlEn7NxQ\n5/qAqr6wdFkWUXrrLTcbN0w/WPH0mX7ITHDR0MlYPN588w1rX//RGab6EreDtmG1q69yLHahROTE\niRNk3ty5djJrqxYKfWnpeC59EeuL94XnnzcvxsDhAhdddJHMmDkrIK0eeF+Aas3R8YwqNuuY1V+0\nm0ydVOtLyF5FxvvS9i61p/cfOPDwy1bLNXzECLMyzXXO/fWZ3LBhvXW8a9efxspzn3NNd9RC5w46\nrMTuKg/n5aoc6psubP3tsIO6zeljXA1daFgcddRRlljRMWkjhg+zuurteLqd9vAjcqlZ/9kOS834\n3gH9+9mHVpexdh17Q9++fcw43sCPB31p68eCPYbTTuN2xK5xXlnxqmXNsq+Hu/UKRPURe9PNN2eb\n/PLLL5cLL7woII4KN5217+4ynfPoXEfUa+S2bdvIe6Zb1w59TY/OrfWy9rioQFQx1rFDR2PRqiHa\n9WsHbXt9lh83Hy12UEv7q6+9nmXIkfdZs+PXNMuW9uz1gNXLoR+uc2bPlpkzZ9iXra3y1mFI+rE2\nxHQjV6tmymQ+ltQS1717N6fnRSPr76J+9Hkn4nn/PjSeflToWEN1W1WxYkUrT+3GXrRoocyaOTPA\nsq/WeLVOekM4z7CKXq9oVxdbapnUZVw1aBy958OH/APrOR3OEOzZ1GsECAQjkFACUV/ufXv3sv6Q\nSpcOPklDK+Hu+m1sXoL6ZW+HnATie++9K49Mm2pFr1r1CmnZKvAFZOfz1JInZekLz1uHHTp2Mi+P\ni+1Lud7GUyC679WgYSNR1z/ZBfdYyW7dezrd3ZpGu5d1FRgNHTt1kQsuvNDaT9R/4t3FrBy8XWZe\na48KqJtcY7DcFia1Kqp10Q4dzXOm467soONH27RpbR/KNddcY4YCjHWOdecbI2SamJe321IS6uWs\n8dWpfDszntAddKzV9XXquE9lEYh6Ua2R4ydMFBWVwYL3pe0WiOrsuuU9LQIsHva4xmB56Tmvmxs9\nt+a/H+smaAjn5eodFqDWq4cfmW5ZX7yZqmDp0L69GSv3gXNJhbJ2saog0KAfV9fWqunwV0YrV60O\n6JnQCUPqN1PjqoVSxYk9TnrixElZ/KLqR4e97nYoIeEUKJsdr0DMJqpzyfsM2he8HyG6xrWuda3h\nnXfesYYe2HFVQKuQDhammd9e7a4PNclKRWjDBvUDRNq8+QuyjAH1Pmt6L33eHjb3VVHtDro+uMb3\nhkmTJhuXY1cEnF5vhtU0atgg4Jx2k2t3uTt4BaJe04mSE8zfh/3B4o6vYy5HGuOEOwTLN5xnWF1e\nqesrO6hfXX2OggUdEqLtYwcdv5zdGEg7HlsIKIGEEohaoAkPjpNPP/1Ed82XWD8pX6GCtW//oz+2\nvXp2l+3GdH/kkUdZLyx312ZOAlG/8nTiiU5A0a+tiZOnWOPB7Px1q/fo3rWzNej3eNPdrWPD8mfT\n3e1OG2zfLdpi3cU8bcpDjuNxXfP5tNNOC1Yk55yORXzsUHe0txv5cfPl+7IZ/KxBOXTo1MlMCDjD\nSZtIO3khDrX+Osh9oemKt8NNN90sAwYOtA/NuNcnrbFu9oknzIvC7ubxdqeq9WbyQ5nWRY0/zXSD\nua0ffUwXZb169e2srK335ZfTJBZN5LVcBnuhB3sBhppIYxfI+9K2BaLOolYR6+5u04kyAwcOspMG\n3fotEL289aahuvrsAmlXnk4ucYdZxip1wQWHP5buatbM6a7UeF5LsPrLVAucBh0HpkNd7DHJ+kGg\noswO+pF8Y90b7ENp3aaNtGx5eCKMcyGMHT8FolrjVDjZXbh6e31WqxhRdPttjcys9kyrr1pgnzAz\n8qMZ2qHDNnT4hh2GDRtuVp8KtNR7nzWN67Xu2ul1vKt7vK+e1/bTdgwWGt9xe4DlOJgje+/fh34w\nqCcCHXIRLOgHnFqu7Z4EjeNtez0XjkCsZT5I3GvBB+u10Lw0eMc/R/M8ZebIv+lEIOEEotvxtb5g\ndHyhO6xZ85E8ZAbja9Al63TpOnfISSBqXLfVrG279vKfSw53Gel17YLWrmgNOjFDJ81EE+IpEPv3\n7e2MRVPrQ07hj11/yOZD3Z/X17lBGt12u5NERXQf8/XtHjOk3XA1atSUs8ysTu0iTISQV+JQ6+61\nyGmX7vMvLHWw6AxknYmsQbv4Xn5lhXNNd+qYF589m1c/WLTL0bZO6UvNPZkj2IvA6yNx/IQJctVV\nVwfcw3vgtUwG8+HofQHq+KZlL74UdCyrnb/3pa1/vzre634zfvHjj/9rRzN/b5dYwsyup3PBs+O3\nQNQJRWpBtEPFipWydFnb19xbHev16aefOqd0TJqOTbODingV83bwWuHc1x94IPPvc8GhjzKdHa0W\nMjssNa6SBgzobx+aj49Fcqbprowk+CkQ9f7eZ13H/enEPe2Kt0MPMybzNtdviH0+p62OF9QxtJs3\n/yAvmq74j8wMZzvo5JO77rrbPrS23mdNu6rffPOtgDj2gf5+ade2OwT72LKv9+n9gJkVnDn2Ws/p\n7H21druD9+/DPXTEHc+9r9bTmTMOd3cH6xHISSDqWGK1RttBXWOpMA0VvBOevB+wodJxHgJKIOEE\nohbKXjpPuwpGGj+J7vEfw4eabs9v11njO9QxtnfiSDgC8ccfN0u/Q2vpXnyxEaFmPIw7zJo53fry\nUgE0yszudd/fHS/c/XgJRLV83nfvPdYYqnDL5o4XrMtdLbUPmx+277/f4I5qOciuZcaOXXnVVY6g\nCYgQp4O8FIdaRZ0gUu3qq03X6T9Oje3l4NRa7Z6IEmyW85DBg0Rf5HaYPXuOnH/BBVZX7NVXXel0\nyeo6z7pmszuoVaLq5Zc5cfSajpfSyTLZBe/YSX3O33zrbWf8kqb1vgC1K0675LIL3pe2CkT1vajd\na3ZQC8ujZvyad8a8fd299VsgqmNzdXBuh3CsmBp3kLEIP39oQpweq1hR0WIH7eZv3Pjwh6qXVYsW\nzeXTTzJ7RbR9dCyndv1p0N+41eajwB6L576Xdke/ZFzwRBq8AlEFnVuMBstXnwX9L1TwjqXU7lTt\nitegQw+02zm79BpPu9fff/89ywWXCm8VMWqhDBXat+8gdzdvHnDZ+6zlJJQuq1LZKadm9PAjj8gl\nHsOAfYMxY0YHjIO8o3Fja3yffV233r+PYHHc8XVfnyFtXzsE+0DJSSCuWbNGWt3b0s7CGjNeyvg4\nDRX2m9+IL7/4wrkcasyxE4EdCLgIJKRAfOftt42PuIetYl57XW25o3Fm98z69d/JUPNC1WA7xrYO\nXP+EIxA1+pBBZoayGQyvVgztZtauEQ36wu/YoZ38Y36w1P2MjsuLNsRLIKp7m3tbtrDGQ+mLR618\nuQlnnXW2GYt2Q5Ykmq/+oL/00ouOtdGOpE6y7211v2T3I2XH9Xub1+LQro+O6VPrih0GDxkiN9xQ\n13Kw3qrV4e5BXYpPl+RzB+86y61bmy5F46tNLW4t77nHidqo0W1m8H0v51h3vNYBfZbffe/9LGOw\nAhKZAxWWVSpfGjDpYOGixy2n13Zc7wuwQcOGotav7IL3pf1/Zla7+8Wvz+QSM7M1VDecN2+/BaJX\n3Nisvff1Hqu/Svdg/2rVsrokcvstVLG3yoxD1IkPOhlGPxKUuSWWTf2ViU4+Uo8NGtxj0W6+6Ub5\n8ccfrfM6yUPHk0YavAIxklnM3nvrOEoVMd4ZvzrhQ7uWcxrSoj4Hdfyctm24IRyBGGyYhDt/5a0T\n+Ozg9p9pn7O33qEdwcSf9+/DPbbYzse7fcczVlMND8tffiUgWk4C0TtkJSBxGAfa9a89EQQIhEMg\nIQWiDlTu1qWz+RHZaVk1xk+YZLlQcY+v62/GLwUbDxeuQHxj9Sozw22WxaiF6UK48lC33LvvvC3T\njfNcDcG6n60LufwnXgJRi9WjW1fLe7/uT314eoBVSM9FG9aZGY3aVfeBEYxqsdSg4nrQkGFxneWc\nKOJQ6//YYwvkQbP8nR1s1xiTJ00y1rI51mm1qrxiupe9KzRo91fNa2o4kxzscXtea1ewrmPv+Dh9\nSb/9zrs5WnBUrKhFRS2cdvC+ML0vwHDElFcgqlj4w/hndIsJnW3Zr9/hLlT7/sG2fgtE79jL9h2M\nZco4Lc8puLuINW4wdzfqNkfd59hh3rz51gfmq6++Kj17dLdOu8ec6YeDvUKTlkHLomMTr699nZ2F\nPDh+glxtrNORhlgIRP1t1vGUOrPZHfS5fso4Lc/OMqxjdXXMrjvojGL9MNXJPyVPK2kJTB0CYbuF\n0rjhCETbUbY7b/e+VyA+ZZy7ly5d2h3F2fd2BYclELsY90YeN2FOhod2vDPevcMLNFpOAtH7W+O9\nR07HwURpTmm4nr4EElIganOoQ2v106ehmenSuch0BatrG/2B0okrOoElWAhXIKqFsGPH9palUH+g\nuvfMtM6MHTPKMsnrD92DRpiqFSDaEE+BaJdfy9zXjJUqW7ZctMUPml676ScYJ86/HfJbdomZudim\nbfugcf0+qS6IRo7IHPfU01i1ihc/1e9b5Co/7TLU2cx2UGH07HPPi3uwewXzzC56/Ak7SsBWX7g6\nkUGDdtmtfuNN40C5k+M2RC2DK1eucroh7cTqBueqK69whLqeV4tETkMidLJInetr29lYVvR33n0v\n4Fn3CsScZhxrZl6BqGJXJ1i0NTOxVZTaoZ0Z99vcs0yhfc299VsgTvS4AwrXQucdBnCfWXlI/UK6\nw6pVq4zj/s7OKVt8utNOnz7D8dfq/gCwZyovf+kl424n00qrz4GunqLjUiMNsRCIuvLMdNM9Gyzc\nYNwfDTYrKgULOs62vrGI6qpCGtS6rNbR62rXzmLxVtc0Dz10eDhDMgjEYGX0cvB+aKh7pxGu2cga\nPyeB+MYbq6WzmSxoB+0m1x6LcIO+z3QteAIEwiGQsAJRJ0h0NS9J7fItXbqM1aX8xOOLrDq5HWN7\nKxmuQNR09lJ9at1RMagWMRWhulVfbw0b3e7NPqLjeArEeXMfNSubvGaVs6HplqxjujpjFXSllSGD\nB1rZ64+O+lGMdVBxqI6wNfQ0jrCL5TDeLtblsfN3uybRc7r8XH0jGm0rq9t6ZKext/oy1JeiHXQc\nV6dOHWWPGaulIbtxQ3VvqBOwGohOCtHhF9kFnQBwn1nNxA5216d9rFu/BKKKIq/VQ//ehurMVCMO\nsgt+C0SvH8ZwZnxr+byThUaNGi26uok7eJdTtGekqxBXQa6WMvdyeTourJlxQK1BX9o6OWn8gw86\ns3ft9O575Hbfb4GoZW5uJuzoR7oG9Zeoz7cu72iHYJZuvebtGs3uI8H77AUTX96Pkby2IIYznrVb\n164B668HcwKek0DcuHGjNRva5h1sgpl9jS0EoiWQsAJRK7Zg/lx5zXTRaFAHztod53WMbV10/ZMb\ngege06jjHLXL7UnjY0pfYCPMS0Ad6PoR4ikQv/76KxlllhDToG6ARpp6hHKUHW3d1Cp07z3NLeuQ\n+jWbPGVatFlmmz5RxaEWeqiZPOVeZkwtTG5LS3bCzbumb1PjNmX+vHkOi+ysdx3at5O3zZhdO+Q0\nFkvj6UxeHSZgh2Bdpt6XdHZlsPPxvrTt7nK9rs6ktYvNDmohmzptWhanzPZ13fotEN2izL6P12WN\nfd7efvutrhBymyP09by3O96O63YWrcMuZs6abVmR9bp3xqr+7VxTo7qzLJw6Tx8zZoyoKx4Nkc4G\nthIf+sdPgajjJtUivmnTJit3HU+6wDh2/9eMo7z7rmbObXWmvq6goj0w7uBdQSe7vwe35V3zSAaB\nqBPDnn7m2aA+ELUO6g/1FuOk3G1JV+uh20m8xstJIOq41csvqxKQTzQz3fWeBAiEIpDQAlFn0KrP\nQ9sKo5XwOsb2Viw3AlHTqmNu9e1VqdJZsnffXvnOvBB0dpl2XfoV4ikQtcwTJzwon3yc+VWv3Ve6\nKs2xxx4btDpqoX1x2VIpbgYvV6lyWUCcF5ctk2rVqzsTeAIumoPvzMoDw4ZkThpSMeB1SeSNH82x\ndlGNPOROI5Esh3advC5USprJO/ZkA3t5PRVFwYL+6OtEBrv7TT9MbNc3Gj+Yo2A7H6+fMz0fzPG1\nHV/FqFoP7b8pfdHPX7DAeubtOLr1WyDqTFd1lK0Os+2gHy46oznUBCe/BaK+nJvffbfjg1DLoTN7\n1VF2MMfN2i7aneeegFS9eg0Z6xpvatdFt7oCiM6AtcOddzaxrKd6rL4x1cWIO7iFus6Mnmus/3YI\n5tLIvhbu1k+BqBNL1EGzHdxjSb2+OIN1NbtnZ2seXldBdr7ecXp6PhkEopYzmEVQz6vh4QEzwcz9\nUaa/DyoovUOYchKIml/Pnj3k1RWH3WWpX1X9Gw71+6Jp9FlWS7belwCBcAkktEDUSkyeNEH+a6b2\na9Cv8gfHT8x2zd/cCkRda1jXHNY/VH1p6kvkPjOT1CuWrAJE+E+8BaJO4FA3PnZXkIrDm26+RUob\nJ9clSpxqui73yI/mi/YHYw3QVWn0Rdy8RUu5yjMgvn27NnLQ8NB1ms8oW9Y4vy1hWXJ10sGXX35h\nWcx0IpGG1ma91EsvrRwhoZyT6ZCDGWbs0+13NE6YbmV3qXW2qvpas5m7r+maq+qQObvQoUN7efut\nt7JEUcu5LjWmQi5U0JePzg51h8bGIt6kaRPHCq5tvNSM69WJM+7JKTqwvrMZYO8NfgtEzV8nYdxp\nnE67nfzqC0vXly5SpIi3CL5bEPUGumbwncZtiZuB+q7s06evtdSevmS1DdWVljJwC1rtJlbrobqf\nCRa8q+ZoPK2z9kio/0vv2K8lS5Y4PgTVAvWTGT6hIViXf7D75XTOKxD1/jcav645hVPNb0T9+g2c\naF7/h8pBx9gWLVrUiqNuk241fiHdrp50STdd2s0O6vdRu9DtoF2juszdhRde6DzbTz21xJrs5Z75\nrvGTRSBqWVU469rRykbfJzo+WVdL+uCDD/SyE2xPB86JQzvhCER9TuqZ+7h5lzW/z13NUnva1e4O\nOkxFLfs6/vFW47NSPSQQIBAugYQXiDprdsTwoVZ9vI6cg1UytwJRX+ydzWQV+4WhloTxEydbA/eD\n5R/JuXgLRC2jdjWroNqx47cci6ziQ31BetdgVYH4l8s1RKiMYj3WMdR9E+38PWbihXs8ll2+cFxg\nLDJrDI8dO8ZO4myDdf86Fw/tqOCqb5Ync88WtuOowFQLpgoVbyhRoqRxTbI46ESIWAhEvb/6A1QL\nplo07HDuuefKI2asopbTHfy2INp5qy9EnSTiDfp3oG5AlJXt288d54HefaRBg8PCyX3N3tfVMnSc\nmDsE83en171uiuw0Xj+L9vncbr0CMdz0+jswc9YsK7o+U40aNTSeEX5xkgd7nr1MdaLU4ieXOF3N\n6814Ze2q935AqWhVcaNd+epCRz/UVeSoSxg7JINAVGaff/6Z8x7RjwOdRKbvF29Qd0NzzSz3YB99\n4QhEzc/L276Hvr/UIn+kMaaoAcD9dx+OJwI7H7YQUAIJLxC1kIMHDjBLFG2SYI6x9bo75FYgatqH\np02xnLbqvtvvoh77EfJCIGq51SGtLqP38X/XBPijs+uk1pIrzFe+rkgTbOarziRXd0DuHxk7rVpF\nzj33PKl57bXW1j6fzlvvLEWbha7dq2v+Zhe8M6HtuKG64uzr9latCjoO8r1337VPZbvVQfVdunR1\nXuDeyLESiHofHaupZXUHHaOn42XdL81YCUS17DzzzNNmFv54Z01kd1m8+2rt6m3Eoa55m1MYb2b2\nL5g/PyCazuTWJc6CBV1Wb6tZXs8dZsycFXK9a3e8nPb9EIi9zMoo6qvTDuqwXYVfRkaGfcraqhi6\n9Zab5ddDXg30pNcxfHYzoO3MupiJHGpBdDs0TwaBqGN01fKrvGxjg10n91YnN+kSk6Fmp4crELWn\na86c2dY45+zu5753MI7u6+xDwEsgTwSitxB5feweszdsxKio1hHN67oEu7++EPWH+0ezjJX+kJ9g\nBpKfcMKJVjeIdwxMsPT6AlNL5O/mC7+AeTHoV//JJ59idTcHi5+u59xr7toMlNUrKzInWtnnQm3V\nB55XjNursoRK4z2vM3XnGN+Lunyie0C8xtMPgnLlylldYNrtnV2IpUDU+44wE6l0Zqs7NGlqurs7\nH+7ujpVAtO+prMcZq+37778f4ETZvq4fTVcbp9gdjHVdu1XDCd4Z4ppGu9DVShoseP0nFjaTO3RI\nQTh/l8Hyc5+LViC63e7Y+Xq7ju3zuvWuFKLn3PH1d+i5554zwxwmWsMH9LodtJu/g1mTumbNmpZ1\nNxkFoi7Jp8tqzjbW16++WutYS/Wjp7TxuXizGeajz3h2IVyBaOeh/ihHmWVh9bfHbZW3r+tzdJXx\n8auWb/VuoB/2BAiESyDtBaJ2nfTs3tUaL5Kdf8VwgRIPAolAQLtI1Sr5/YYNZsxuIWPdKGs5IXZb\n6BKhnIlSBv0dULdNKhrVSlbGWINUrBH8J6AT477/foPpit9kjXHW1ZjOMatWJdOzmdMHlH6If2aW\nEdS/vTPPrBhyop9fdLXrXmeYr1//nTU8Qru4Tz7J/Ges36GslX7dm3xSl0DaC0T1rbjcLCGnoWWr\n+0TXIyZAAAIQgAAEQhHISSCGSsd5CCQTgbQWiLvMMmC9e/WwxiFpV+DI0WN9nZySTA8CZYUABCAA\ngfAIIBDD40Ss5CaQ1gLRPfaw2V3NpXqNGsndmpQeAhCAAARiTgCBGHPE3CABCKSVQFQn2Do2Y8vW\nLfLmG2/Iu+9krkBx+umlpN+AgVgPE+CBpAgQgAAEEp0AAjHRW4jy+UEgrQRiF7PO8s4dOwK46WoO\nA4zbgaJFWcA8AAwHEIAABCAQlAACMSgWTqYYgbQWiGedfbbcdXeLkCsjpFhbUx0IQAACEPCBAALR\nB4hkkfAE0kogrl37pWwzy0JlZBSU00udbtxZlEr4BqKAEIAABCCQWAQQiInVHpQmNgTSSiDGBiG5\nQgACEIBAOhHYYPyLbtv2s1Nl9Z2pS1cSIJBKBBCIqdSa1AUCEIAABCAAAQj4QACB6ANEsoAABCAA\nAQhAAAKpRACBmEqtSV0gAAEIQAACEICADwQQiD5AJAsIQAACEIAABCCQSgQQiKnUmtQFAhCAAAQg\nAAEI+EAAgegDRLKAAAQgAAEIQAACqUQAgZhKrUldIAABCEAAAhCAgA8EEIg+QCQLCEAAAhCAAAQg\nkEoEEIip1JrUBQIQgAAEIAABCPhAAIHoA0SygAAEIAABCEAAAqlEAIGYSq1JXSAAAQhAAAIQgIAP\nBBCIPkAkCwhAAAIQgAAEIJBKBBCIqdSa1AUCEIAABCAAAQj4QACB6ANEsoAABCAAAQhAAAKpRACB\nmEqtSV0gAAEIQAACEICADwQQiD5AJAsIQAACEIAABCCQSgQQiKnUmtQFAhCAAAQgAAEI+EAAgegD\nRLKAAAQgAAEIQAACqUQAgZhKrUldIAABCEAAAhCAgA8EEIg+QCQLCEAAAhCAAAQgkEoEEIip1JrU\nBQIQgAAEIAABCPhAAIHoA0SygAAEIAABCEAAAqlEAIGYSq1JXSAAAQhAAAIQgIAPBBCIPkAkCwhA\nAAIQgAAEIJBKBBCIqdSa1AUCEIAABCAAAQj4QACB6ANEsoAABCAAAQhAAAKpRACBmEqtSV0gAAEI\nQAACEICADwQQiD5AJAsIQAACEIAABCCQSgQQiKnUmtQFAhCAAAQgAAEI+EAAgegDRLKAAAQgAAEI\nQAACqUQAgZhKrUldIAABCEAAAhCAgA8EEIg+QCQLCEAAAhCAAAQgkEoEEIip1JrUBQIQgAAEIAAB\nCPhAAIHoA0SygAAEIAABCEAAAqlEAIGYSq1JXSAAAQhAAAIQgIAPBBCIPkAkCwhAAAIQgAAEIJBK\nBBCIqdSa1AUCEIAABCAAAQj4QACB6ANEsoAABCAAAQhAAAKpRACBmEqtSV0gAAEIQAACEICADwQQ\niD5AJAsIQAACEIAABCCQSgQQiKnUmtQFAhCAAAQgAAEI+EAAgegDRLKAAAQgAAEIQAACqUQAgZhK\nrUldIAABCEAAAhCAgA8EEIg+QCQLCEAAAhCAAAQgkEoEEIip1JrUBQIQgAAEIAABCPhAAIHoA0Sy\ngAAEIAABCEAAAqlEAIGYSq1JXSAAAQhAAAIQgIAPBBCIPkAkCwhAAAIQgAAEIJBKBBCIqdSa1AUC\nEIAABCAAAQj4QACB6ANEsoAABCAAAQhAAAKpRACBmEqtSV0gAAEIQAACEICADwQQiD5AJAsIQAAC\nEIAABCCQSgQQiKnUmtQFAhCAAAQgAAEI+EAAgegDRLKAAAQgAAEIQAACqUQAgZhKrUldIAABCEAA\nAhCAgA8EEIg+QCQLCEAAAhCAAAQgkEoEEIip1JrUBQIQgAAEIAABCPhAAIHoA0SygAAEIAABCEAA\nAqlEAIGYSq1JXSAAAQhAAAIQgIAPBBCIPkAkCwhAAAIQgAAEIJBKBBCIqdSa1AUCEIAABCAAAQj4\nQACB6ANEsoAABCAAAQhAAAKpRACBmEqtSV0gAAEIQAACEICADwQQiD5AJAsIQAACEIAABCCQSgQQ\niKnUmtQFAhCAAAQgAAEI+EAAgegDRLKAAAQgAAEIQAACqUQAgZhKrUldIAABCEAAAhCAgA8EEIg+\nQCQLCEAAAhCAAAQgkEoEEIip1JrUBQIQgAAEIAABCPhAAIHoA0SygAAEIAABCEAAAqlEAIGYSq1J\nXSAAAQhAAAIQgIAPBBCIPkAkCwhAAAIQgAAEIJBKBBCIqdSa1AUCEIAABCAAAQj4QACB6ANEsoAA\nBCAAAQhAAAKpRACBmEqtSV0gAAEIQAACEICADwQQiD5AJAsIQAACEIAABCCQSgQQiKnUmtQFAhCA\nAAQgAAEI+EAAgegDRLKAAAQgAAEIQAACqUQAgZhKrUldIAABCEAAAhCAgA8EEIg+QCSLwwSa39X0\n8EGEe6eWKCE9e/WWwoULR5gDySAAAQhAAAIQiIYAAjEaeqTNQsAPgaiZIhKzoOUEBCAAAQhAIG4E\nEIhxQ50eN7IF4py58yOqsJ1eEyMSI0JIIghAAAIQgEDUBBCIUSMkAzcBW+BFKxBVHG7dsgWR6IbL\nPgQgAAEIQCBOBBCIcQKdLrfxSyBOnDxFRo0cjkhMlweHekIAAhCAQEIRQCAmVHMkf2H8Eohqgdy1\naxciMfkfCWoAAQhAAAJJSACBmISNlshF9lMgaj0RiYnc2slfthUrXrEqUavWtclfGWoAAQhAwEcC\nCEQfYZKViN8CUZmmk0hcvny5fPjhB86jdMMNdeWiiy5yjoPt7Nm9W8Y9OM651KvXA5KRkeEcsxOc\ngIrDhQsyJ1M1btJUEInBOXEWAhBITwIIxPRs95jV2i+BmF0BdQLLsOEjs4uStNdGjRwpixc/4ZT/\n1FNPlcVPLpEjjzzSOefd2blzp9S8poZz+q2338k2vhMxjXfc4tDGgEi0SbCFAAQgIIJA5CnwlUA8\nBKIWONJZ0r5WNgaZeQWi3qJx4zula7duIe+GQAyJJugFWxxeemll+eOPP2Tfvn1SpGhR+chYbhGJ\nQZFxEgIQSEMCCMQ0bPRYVjlagZhT2WKdf073j/X1YAIxf/78MufRR+Wcc84NensEYlAsQU+6xeF9\n97eWsWNHy/79+6Vnzwdk2rSpMRWJf/31lxxzzDFByxXs5O7df8nRR4cfP1genIMABCAQKQEEYqTk\nSBeUQKwFXKzzD1qpOJ50C8RTTjlFtm3bZt29bLlysnDhIilQoECW0iAQsyAJemLl66/LvLlzRC2H\nKg7zH3GEjB41whKID/TuKweMUHz44any4QcfSLO7mkv1Goe77YNmmIuTW4xPz9HGbdO119WWG+re\nmGPKnTt2yEgT/9xzz5MmTZvlGJ8IEIAABPwmgED0m2ia5xdrARfr/PO6+dwCUbuWX3/9Nfn555+t\nYrVu3UZa3ntvliLmRiD++++/Vn4//fST5M+fT0477XQ5+eSTzX7+LPlmd+Lvv/+WtV9+KWXOOEOK\nmu7ZYOG3336Tb9etk9NOP110LGW+fPmCRctyTi1t33zzjRQsWFDKGWGc3fjLLImzObFp40ZZufJ1\nadbsLkscalS3QNRjFYnz5s2V6tVrSKnSpfVU1EGZ9+zeTX7/faeVV4OGjbIVibY43H7o44Bu76ib\ngAwgAIEICCAQI4BGktAEYi3gYp1/6JrF54pbIDYxM2srV6ki7du1tW6ugmnhoselTJkyAYUJRyC+\n//77suTJJ2X16lWWxcydQYkSJa0xjldffbX7tLVf7eqr5M8//7T2Z82eLSeeeJL0799Pvvj8cysf\nFZbnnXe+tO/QXi644EIr3gvPPy/zzezg9d995+SnYmvkyFFSoUIF55x3571335UxY0bLpk2b5ODB\ng9ZlFZXnnnuuDBo8RE43QtPv4BWIfudv57fmo49k2tSHHPahRKJXHFY480zp0rW7FCpUyM6KLQQg\nAIG4EEAgxgVz+twk1gIu1vnndUu5BeIdjRtLt27dpX+/vrJs2TKraOeff77Mmj0nwBqXk0Dcvn27\nXF/7uhyrNn7CBLnqqkCR6BaIg4cMkSkPTTHd3pkWTXeGJ510kpl9/aR8aIRQr5495MCBA+7L1v5R\nRx0lLyxdJscff3zANRWDE8aPl8ceW+AIw4AI5kDTjh07zhLM3mvRHMdLIGoZcxKJiMNoWpK0EICA\n3wQQiH4TTfP8Yi3gYp1/XjdfMIG4y8y0rV+/nuww49I09OzVSxo1us0pargCUS1x9erXl/LlK5hu\n4SLGmrhalixZ4lj6tBv4+ReWBohPt0AsWLCQqBBs1aqVsSSeaHXXano7qHj96quvpFixYlZXuHY9\nv7pihTz77LN2FGlxzz3Stm0751h31OI4cOAA61zhwoWNNbO7VK1aVfbs2WO5/FkwP9NXoVoQlzz1\ntBxhxg76FUaPHGGJ2V69+/iVZbb5hBKJiMNssXERAhDIAwIIxDyAnsq3jLWAi3X+ed02wQSilkmF\nVk9jmdNw1NFHW8LulFOKWcc5CUR15aITNG6+5ZYA8aeJP/nkY7mnRQsrH/3npeUvW2MS7RNugaj3\nffrpZyyRaF8fMKC/LH3hBfvQsg4+YSyJKiDt0LlTJ3njjdXWoYrUR+fOsy+Jit9bb73FjM/73To3\nZuxYqVHjGue67jRr1lS+/OIL61y//gPkFlMPv0K8BaKW2ysS6xhn6B999KHYYw7pVvardckHAhCI\nhgACMRp6pM1CINYCLtb5Z6lQnE+EEohajK5du8iqlSutElW94gqZNGmytZ+TQLQihfhHu4Kvu7aW\nY52cPn2GXPyf/zix3QIxmD9GFTutWh2eOHO/mR18r7EwusOLLy6Tfn37WqfUArn85czl7fSEOgXX\nOmvQsZDPPvdclgkzs2bNlKlTplhx6tata41HtA58+CcvBKIW2ysS7aogDm0SbCEAgbwmgEDM6xZI\nsfvHWsDFOv+8bo7sBOKvv/4qDUxXsz1pZNjwEVK7dm0JVyCqGPzSzDz+/PPPZPMPm2XzZv3vB9m6\ndaszZnDcg+OlWrVqDga3QLTv51w0Ozobuu4NdZxT02fMlIsvvtg51p01a9ZIq3tbWud0UsuHH61x\nro80XbxPLl5sHev4x+o1qjvX7B2dtPLonDnWoU6E0ckyfoW8Eohafq9IRBz61arkAwEI+EEAgegH\nRfJwCMRawMU6f6ciebSTnUDUIj333LMyeNAgq3RFihSRp0yXrwq/7Jba0+sLH3tMZsyYLupCJruQ\nnUAMJv5UrKqItMPzprtZLYHu8O2338rttzWyTums5I/W/Ne5rNZHFUrhBvUN+eJLy8ONnmO8vBSI\nWjhbJKqfS2Yr59hcRIAABOJIAIEYR9jpcKtYC7hY55/XbZSTQNTytWl9v6jbGg116twg3bp3lxrV\nq1nH+o93LWZ3nnr9rLPOkssvryqnlzpdSpY8TcaNG+uM8ctOIKrlznZlo/loUMF59VVXZh6Yf5cu\ne1GKFy/uHOuOurtp1Kihdc4rEFs0v1s+/fRT65oK3qPNOMfswnHHHSfz5i/ILkquruW1QNTCfrV2\nrZxRtiyubHLVckSGAARiTQCBGGvCaZZ/rAVcrPPP6+ZyiznbzY23TLoqx21GcKmzag2jx4yVHsYR\nsx3cAlGdQzdoUN+yMqo4Uz+KXl+E7kkg8RaIA4xPxaVLl1pFv++++6XVfffZ1YjLNhEEYlwqyk0g\nAAEI5JIAAjGXwIiePYFYC7hY55997WJ/NRyBqKVYtHCh8Qs4xipQyZIlA8YRugXiSy++KH37Zrpw\nqXLZZTJlytSASug6xNWrXS27d++2zsdbIM6cMcNaA1lvrk7Bp06dFlC+WB8gEGNNmPwhAIFkJYBA\nTNaWS9Byx1rAxTr/vMYarkDUcYX3tGgun332WZYiuwWie5ZwuXLl5YlDE0LsRPPnzZMJE8bbhxJv\ngahL6jW5s7EzSWbkqFFSq9a1TnncOzqWsXz58u5TUe+PGjFcDpr/9XogPn4Qoy4wGUAAAhCIEwEE\nYpxAp8ttYi3gYp1/XrdTuAJRy/n9999L4ztuF13r1x3cAlEnQbjd0KiDbXUVU6BAAeNuZrmoE2p1\nPL13714ri3gLRL3pkMGDHGfaOstZ/TXWqllLSp5W0pqhvfH7jdbknD927bJWa3HXNdp9BGK0BEkP\nAQikKgEEYqq2bB7VK9YCLtb55xE257a5EYiaaOZM00U7NbDb2C0Q1dLY8p4WzkQQ50aHdu5u3lw+\n/vhj+fSTT6wzeSEQdYWYDu3bWauweMvnPtaZvrqcn58BgegnTfKCAARSiQACMZVaMwHqEmsBF+v8\n8xphbgXivn37pGmTO2XdunVO0d0CUU/qWswjTVeqLq1nB10P+dZ69aRdu/bWSiq6ooqGvBCIel8d\nC6lid5EZW2n7edTzGtTaWb16Dbnt9tvkwgsvyjzp078IRJ9Akg0EIJByBBCIKdekeVuhWAu4WOef\nt/Rie3cVips2bTTL4RWRcsYap7OaEzFoOTesXy8ZGRlysvF7ePLJJ8fMBQwCMRGfAMoEAQgkAgEE\nYiK0QgqVIdYCLtb5p1BTUJUwCCAQw4BEFAhAIC0JIBDTstljV+lYC7hY5x87MuSciAQQiInYKpQJ\nAhBIBAIIxERohRQqgy3gYl2lOXPnx/oW5A8BCEAAAhBIWwIIxLRt+thUHIEYG67kCgEIQAACEIgn\nAQRiPGlzLwhAAAIQgAAEIJAEBBCISdBIFBECEIAABCAAAQjEkwACMZ60uRcEIAABCEAAAhBIAgII\nxCRoJIoIAQhAAAIQgAAE4kkAgRhP2twLAhCAAAQgAAEIJAEBBGISNBJFhAAEIAABCEAAAvEkgECM\nJ23uBQEIQAACEIAABJKAAAIxCRqJIkIAAhCAAAQgAIF4EkAgxpM294IABCAAAQhAAAJJQACBmASN\nRBEhAAEIQAACEIBAPAkgEONJm3tBAAIQgAAEIACBJCCAQEyCRqKIEIAABCAAAQhAIJ4EEIjxpM29\nIAABCEAAAhCAQBIQQCAmQSNRRAhAAAIQgAAEIBBPAgjEeNLmXhCAAAQgAAEIQCAJCCAQk6CRKCIE\nIAABCEAAAhCIJwEEYjxpcy8IQAACEIAABCCQBAQQiEnQSBQRAhCAAAQgAAEIxJMAAjGetLkXBCAA\nAQhAAAIQSAICCMQkaCSKCAEIQAACEIAABOJJAIEYT9rcCwIQgAAEIAABCCQBAQRiEjQSRYQABCAA\nAQhAAALxJIBAjCdt7gUBOeDUegAAORFJREFUCEAAAhCAAASSgAACMQkaiSJCAAIQgAAEIACBeBJA\nIMaTNveCAAQgAAEIQAACSUAAgZgEjUQRIQABCEAAAhCAQDwJIBDjSZt7QQACEIAABCAAgSQggEBM\ngkaiiBCAAAQgAAEIQCCeBOImEHf8uj2e9eJeEIAABCAAAQhAAAIREkAgRgiOZBCAAAQgAAEIQCBV\nCcRNIKYqQOoFAQhAAAIQgAAEUo0AAjHVWpT6QAACEIAABCAAgSgJIBCjBEhyCEAAAhCAAAQgkGoE\nEIip1qLUBwIQgAAEIAABCERJAIEYJUCSQwACEIAABCAAgVQjgEBMtRalPhCAAAQgAAEIQCBKAgjE\nKAGSHAIQgAAEIAABCKQaAQRiqrUo9YEABCAAAQhAAAJREkAgRgmQ5BCAAAQgAAEIQCDVCCAQU61F\nqQ8EIAABCEAAAhCIkgACMUqAJIcABCAAAQhAAAKpRgCBmGotSn0gAAEIQAACEIBAlAQQiFECJDkE\nIAABCEAAAhBINQIIxFRrUeoDAQhAAAIQgAAEoiSAQIwSIMkhAAEIQAACEIBAqhFAIKZai1IfCEAA\nAhCAAAQgECUBBGKUAEkOAQhAAAIQgAAEUo0AAjHVWpT6QAACEIAABCAAgSgJIBCjBEhyCEAAAhCA\nAAQgkGoEEIip1qLUBwIQgAAEIAABCERJAIEYJUCSQwACEIAABCAAgVQjgEBMtRalPhCAAAQgAAEI\nQCBKAgjEKAGSHAIQgAAEIAABCKQaAQRiqrUo9YEABCAAAQhAAAJREkAgRgmQ5BCAAAQgAAEIQCDV\nCCAQU61FqQ8EIAABCEAAAhCIkgACMUqAJIcABCAAAQhAAAKpRgCBmGotSn0gAAEIQAACEIBAlAQQ\niFECJHkggf3b35K9G+bJgT+/C7yQzdERRS6QAmc0kyOKXpBNLC5BAAIQgAAEIBAvAgjEeJFOk/v8\n/WZjOfi/nyOqbcbp9SXjzLYRpSURBCAAAQhAAAL+EUAg+seSnAyBPStqRMWhwKm1peDZPaLKg8QQ\ngAAEIAABCERHAIEYHT9SewhEKxA1O0SiB+qhw3/++UcKFSoU/GKMz3799VcyadIkycjIkIkTJ8X4\nbmQPAQhAAAJ5TQCBmNctkGL390MgZpSqLfmOLiYH/1wrcnBfZIT275N8x1eVAiUbRpY+gVL9/fff\nMnLEcHnvvffk5VdW5EnJ3jf3btOmtRQsWEjeNfsECEAAAhBIbQIIxNRu37jXLlqBmCkOi8vB3UYc\nHtgfVfkP7t9vuqvHRZVHXiY+ePCgvPrqChn/4HjZtu1nOfHEE1NWIP77779GfBbMS9zcGwIQgAAE\nXAQQiC4Y7EZPIBqBmFHqemM5tMWhWg7zuQp0MKLjjIqjXHkkx+7u3bvltddelQULFsj67w7PBk9F\ngbjmo49k+ozpklEgQx6aMiU5GohSQgACEEgDAgjENGjkeFYxEoGYv3BpKXDypSKFjpWDfxnLoRww\n/zeCML8KxEPCMMLjjAoj4ll9X+510403ypYtP1p5lSxZUqpVq27E4vyUtCA+/PA0mTF9ulx66aUy\n7eFHfOFHJhCAAAQgED0BBGL0DMnBRWDfz89kGv5CGfzs8/ZW0x74R2TvTuMeZ0tmt3J+PWf+060d\n7GPvNofrySgQb6hzvWj38p1NmkjDho1k1aqV8kCvXnLSSSfJ8pdfsWsc122sxiAiEOPajNwMAhCA\nQNgEEIhhoyJiOAT2rusTTrS4xcmoMCxu9/LrRl9++aVUqlRJ8ufPVMivvPJyXAWiWi83/7BZyleo\nICeccIJVrXAFonaPb9myRX7Zvt2yeJ5eqpQceeSRIdHkViDu2LFDtm7dIn/8sUtKlighJYyFtUCB\nAiHz5wIEIAABCERGAIEYGTdShSCAQAwBJorT8RCIBw4ckClTHpKnn3pKdu3a5ZS2RImS0rdfPzlo\nroeaxazWzjfffMMaM6ljCt3hiCOOkKZNm0mr++4LcNFTq+Y1omIvVNDuZu121vC///1PXnj+eVm0\naKFs2rQpIEnh446TLp27yI033RRwngMIQAACEIiOAAIxOn6k9hDYu66vNbXE7kHO3OYzIwkPBjlv\njzCM3fUCFYZ6Sph8h7EWiLv++EO6desqa9assayWZcuWlYrGgvnH73/Ip59+Ygm0226/XebNnRvU\nzY2Ktnq33mKB1Yk05ctXkGLFi8l3334rn3/+uXX+1nr1pG/ffg78hg3qy++//y579uyx8lcrYOHC\nhZ3ro8eMkQsvvMg6fvrpp2TY0KFW2UoYq6Hmf/QxR8snH38smzdvtuIMGzZcal9/vZOeHQhAAAIQ\niI4AAjE6fqT2EFCBGDgIMVAq2pIwXtuMCkM8JUy+w1gLxJEjR8iTixfLMcccI8OHj5CqV1zhQFLx\nOGjQQDMOcpV1Tl3RvPve+8513VGB2KF9O+nevYdcceWVAddmzpwh06ZOtcTdkqeellKmy9kdwuli\nVoH4ihl72dOMwyxTpoyTXF3jdO/eTd56800pVqyYLF32ouTL55757kRlBwIQgAAEckkAgZhLYETP\nnsC+dWolcs0+tmch59G2QIXB2Rc4Ca7GUiCqBa5B/Xqyb98+GTN2rNSocU0WIrqCS6OGDeTHH3+0\nfBV6BaJeV2EWzI/h3r175bpra5kxg39IMCtfOALxzz//lGOPPTZLufSErvByZ+PG1jWdwKMTeQgQ\ngAAEIBA9AQRi9AzJwUVgryUQXSfyeBcLYvYNMNksn/foo3OkbLly8sQTi0Na4B6dM0cmT54UVCBm\nfweR5nffJZ999pm0btNGWra8NyB6OAIxIIHnQK2Il19WxZr1PWv2bLngggs9MTiEAAQgAIFICCAQ\nI6FGmpAE9q7rH2A/tCOG6miO9XUsiDbh4NtuXbvKypWvy+1mjGH3Hj2DRzJnV69ebSaDdMpRIG7d\nulW++OJza2zgj5vNbGhjoVQrny4X2Oyuu6Rjx04B98iNQNTJMOu++UbWrVuXmf+Pm63tV199ZQnE\nSZMmB3SPB9yIAwhAAAIQyBUBBGKucBE5JwKZFsTE6WLOoIs52ya7rVEj+e67b6Vzly7SpEnTkHFz\ncnPz/PPPycwZMx0H33ZG2vWs7nr2m2UPIxWI2oWtQvK5Z5+1uqrtvHWrk1u0e1wDAtHCwD8QgAAE\nfCGAQPQFI5nYBPYZC2IiBSyI2beGjg/89ddfpU/fvlKvXv2Qkd955x1p366tsSAWMpNU3guI9+C4\ncfLYYwusczoJ5ZqaNeXcc8+VkiVPM/+VlB7du1tucCIRiCostYtafUOq2Dzv/POlRvUalo9Gzbt4\n8eJy9VVXWrOhEYgBzcIBBCAAgagIIBCjwkdiLwHGIHqJRH8cy0kqd9/VzHJF07xFC2nXrn3Iwtqu\nZryzmNevXy+339ZI1I/iqFGjpWatWlnyuN/4QPzwww8isiAuefJJGTFiuKi/w0fnPCqlSpcOyF/v\ne1mVypYVEYEYgIYDCEAAAlERQCBGhY/EXgIqEBOng9l0QeLmxttEAcd9+/aRl158USpXqSJTp04L\nuOY+UD+EKhK9AvHZZ56RIUMGW25mlr34kjuJs29bKSOxINrlq1u3rgwanNVlkdsHIwLRQc4OBCAA\ngagJIBCjRkgGbgKZfhDdZ/J2PwNH2dk2wLNmXN+QwYOsOPPmzZezzzknS3xdeq9B/fqiM4a9AlFn\nQOtM6OOPP15eWv6ydd2dwaqVK6Vr1y7WqWACce7cR2XSxIlyZsWKsnDhIndSa1+7tbV7+6qrrpbx\nEyZkuT527BhZtHChdR6BmAUPJyAAAQhETACBGDE6EgYjsM9ylH3YDbYdx57FHO/jdFlJRcXbtGlT\nrdnCbVq3sbpkbdbZbXWMn65qopa4U089VcaOHWeJNTvNxo0bzRjCbrLTrHqy47ffsghEXWKvU8eO\nVnR1lH37HXfYSeXTTz6xHFnr0n3qDzGYQFyx4hXp1bOnZGRkiDrS1nGF7jB+/IOyYP58a6LL/AUL\npGLFSs5ltWiOGT3GdC/vtbq4EYgOGnYgAAEIRE0AgRg1QjJwE9i7rrf7MM/3MyoMz/MyRFuAcMYg\n2kJL76WuZFSMhRs++OAD6dqlszXRQ4XaWWefLWXMWL8ffvjBuKz5UiqdVcmsp9xU1CWOd5KKziBu\n1rSJfGPcz2hQkXnxf/4j6uJGl+mr36CB/PTTT9ZqJ8EEoorHm26sK+oMW9dtrmK6un81QrRTp87W\nWsxbtmyxxjjqknwazjrrLDnDLAWorm2+37BBhpol9oaaLm69jkC0EPEPBCAAAV8IIBB9wUgmNgEV\niJljEA/bDPPyOF0Eok4WaXzH7ZYlbfLkh6TKZZfZTRLWdpOxFOp4v7Vr1zrxdWJIlcpVpF+/ftZE\nljZtWmcRiBpZBeCI4cPk7bffDkh7Y90bLfc5nTt1CjmLWRPoUnkDBw6QnTt3WulVKE6fMcNxer1m\nzRoZPmyoqDXTDipE77u/tejYxCuvqIpAtMGwhQAEIOATAQSiTyDJJpPA3q97ieQ3+wdcRPLwOKPi\nSFdBUntXu4D/MV3N6vol0qCWPHVGrWMK1VKXm7WNt23bZnVVa9ry5cvnKq36Otz4/fdW+StUqCD/\n93//F1AFna2sTre3bt0ipUuXiaqOARlzAAEIQAACQQkgEINi4WSkBPZ+3VPyGUF4UAXiIWGYl8cZ\nFUZFWhXSQQACEIAABNKWAAIxbZs+NhXfsewuOfq0EyR/xhGSl/5uDvyzX3Zv/k2K1p0bm4qSKwQg\nAAEIQCCFCSAQU7hx86Jqu94cJr+8tVL27f43L27v3FMFavHaN8gxlbs559iBAAQgAAEIQCA8AgjE\n8DgRCwIQgAAEIAABCKQNAQRi2jQ1FYUABCAAAQhAAALhEUAghseJWBCAAAQgAAEIQCBtCCAQ06ap\nqSgEIAABCEAAAhAIjwACMTxOxIIABCAAAQhAAAJpQwCBmDZNTUUhAAEIQAACEIBAeAQQiOFxIhYE\nIAABCEAAAhBIGwIIxLRpaioKAQhAAAIQgAAEwiOAQAyPE7EgAAEIQAACEIBA2hBAIKZNU1NRCEAA\nAhCAAAQgEB4BBGJ4nIgFAQhAAAIQgAAE0oYAAjFtmpqKQgACEIAABCAAgfAIIBDD40QsCEAAAhCA\nAAQgkDYEEIhp09RUFAIQgAAEIAABCIRHAIEYHidiQQACEIAABCAAgbQhgEBMm6amohCAAAQgAAEI\nQCA8AgjE8DgRCwIQgAAEIAABCKQNAQRi2jQ1FYUABCAAAQhAAALhEUAghseJWBCAAAQgAAEIQCBt\nCCAQ06apqSgEIAABCEAAAhAIjwACMTxOxIIABCAAAQhAAAJpQwCBmDZNTUUhAAEIQAACEIBAeAQQ\niOFxIhYEIAABCEAAAhBIGwIIxLRpaioKAQhAAAIQgAAEwiOAQAyPE7EgAAEIQAACEIBA2hBAIKZN\nU1NRCEAAAhCAAAQgEB4BBGJ4nIgFAQhAAAIQgAAE0oYAAjFtmpqKQgACEIAABCAAgfAIxE0g/vXn\nrvBKRCwIQAACEIAABCAAgTwlgEDMU/zcHAIQgAAEIAABCCQegbgJxMSrOiWCAAQgAAEIQAACEAhG\nAIEYjArnIAABCEAAAhCAQBoTQCCmceNTdQhAAAIQgAAEIBCMAAIxGBXOQQACEIAABCAAgTQmgEBM\n48an6hCAAAQgAAEIQCAYAQRiMCqcgwAEIAABCEAAAmlMAIGYxo1P1SEAAQhAAAIQgEAwAgjEYFQ4\nBwEIQAACEIAABNKYAAIxjRufqkMAAhCAAAQgAIFgBBCIwahwDgIQgAAEIAABCKQxAQRiGjc+VYcA\nBCAAAQhAAALBCCAQg1HhHAQgAAEIQAACEEhjAgjENG58qg4BCEAAAhCAAASCEUAgBqPCOQhAAAIQ\ngAAEIJDGBBCIadz4VB0CEIAABCAAAQgEI4BADEaFcxCAAAQgAAEIQCCNCSAQ07jxqToEIAABCEAA\nAhAIRgCBGIwK5yAAAQhAAAIQgEAaE0AgpnHjU3UIQAACEIAABCAQjAACMRgVzkEAAhCAAAQgAIE0\nJoBATOPGp+oQgAAEIAABCEAgGAEEYjAqnIMABCAAAQhAAAJpTACBmMaNT9UhAAEIQAACEIBAMAII\nxGBUOAcBCEAAAhCAAATSmAACMY0bn6pDAAIQgAAEIACBYAQQiMGocA4CEIAABCAAAQikMQEEYho3\nPlWHAAQgAAEIQAACwQggEINR4RwEIAABCEAAAhBIYwIIxDRu/FhUff/2t2Tvhnly4M/vws7+iCIX\nSIEzmskRRS8IOw0RIQABCEAAAhCIHQEEYuzYpmXOf7/ZWA7+7+eI6p5xen3JOLNtRGlJBAEIQAAC\nEICAfwQQiP6xJCdDYM+KGlFxKHBqbSl4do+o8iBx+hE4ePCg5MuXL/0qTo0hAAEIxIgAAjFGYNM1\n22gFonJDJCbe0/P111/JpEmTJCMjQyZOnJQQBdy/f7/MmTNbXl6+XH744Qc54YQTZdrDD0upUqXk\nm6+/li1bt8hVV10tBQoUcMq7YcMGGTt2jHX80ENTJH/+/M41diAAAQhA4DABBOJhFuz5QMAPgZhR\nqrbkO/oUOfjnVyIH95pSqWXoYO62+/dJvuOrSoGSDX2oVXyz+Pfff+WpJUvky7Vfyob16+WPP/6w\nRM+5554nTZo2lWOPPTa+BTJ3e/+996RNm9ZSsGAhedfs53VQi2Gb1vfLBx98YBXlyCOPlP/973/y\n2MJFRiieIHWury0qILt26yaNG9/pFPfTTz+VFs3vto4//GgNAtEhww4EIACBQAIIxEAeHEVJIFqB\nmCkOi8vB3WtFDuyPqjQHjUAoePa4qPKId+IvvvhcBvTvLxs3brRurd2mKobscPzxx8uoUaPlP5dc\nYp+KyzbRBOKzzz4rQwYPEhWGPXv2kutq15a///5bChUqJLt377YE4r59+6R79x5y+x13OIwQiA4K\ndiAAAQhkSwCBmC0eLuaWQDQCMaPU9cZy6I84tMudUXGUvZsU2/vuayVrPvpI6tSpIw0aNpKKFSvK\nvr175eOPP5bx4x+U77//3rKQPbH4SSlSpEjc6pRoArFr1y6yauVKufLKq2TCxIlZOHz33bfy008/\nSdWqVwRYCRGIWVBxAgIQgEBQAgjEoFg4GSmBSARi/sKlpcDJl4oUOlYO/mW6lUUth3aXsl2SyI4z\nKoywM0iKbbeuXaVho0ZSuXLlLOXdvn27NGrYQP78809p07at3HNPyyxxYnUi0QRig/r1LLHs7ULO\nqf4IxJwIcR0CEIBAJgEEIk+CrwT2/fxM7ocMHvxHZO9O4x5nS2a3ss4bOGD+82GbbAJx165dUrhw\n4ZBtMqB/P1m6dKnUqHGNjBk7NmQ8vy8kmkC8oc718vPPP8vwESPluuuuC7u6CMSwURERAhBIcwII\nxDR/APyu/t51ffzOMqr8MioMiyp9oiWeNWumTJ0yRSpVqiQLHlsYk+Jt2fKjbP5hs5SvUMHqztab\n5EYg6phJ7d7dtGmjFC16gpQpU8ZMbinoa1njIRD/+ecf+eabb8xkl31SvnwFOeaYY3Ksg06M2bx5\ns2zdulVOKFpUzihb1pr5nWNCIkAAAhBIMAIIxARrkGQvDgIxti04zlgNFy58TK6++mp5cPwE3252\n4MABmTLlIXn6qadErZh2KFGipPTt108Omus5zWLesWOHjDMuZN544w3Zs2ePnYU1BvCcc86RPn37\nSrly5Z3zud157913pW3bNiGT1b3xRhk0aLB1vfKll4hOUnn4kUfkkkvM8IVDIRwLogrkQQMHyief\nfGLNhLbTnn322TJ4yFApXbq0fcrZqjCcP2+eLFq0UH799VfnvLoFUpE4a9Zsa0KNc4EdCEAAAglO\nAIGY4A2UbMXbt66vKXIEbmmcMYf2WEN/tgUqDEk2hNmW9zYzPlEnYLRsea+0bhNaLGWbiefiLuNG\np1u3rrJmTabbl7JG0FQ0Fso/fv9DPv30E8t9zG233y7z5s4N6ebmzTffsGZfq0ueo446yppcc7rx\nR7h1yxb56quvrHGTakXs3qOH1KtX31OC8A518k6vXj2tyL///ruoqD366KOtmct68tprrzX5Z16P\nVCCuXr1a+vXtY82ELlasmFxwwQXWLHIVi9u2bbNE3oQJEwNmkavFtF+/vvLSiy/KEUccIVUuu0yK\nm7QqFNetW2dZE1etfiNP3BOFR5ZYEIAABLISQCBmZcKZKAjsTTCBmJFCAnHlytdFJ7GoCHnBjEM8\n5ZRiUbTU4aQjR46QJxcvtrpQhw8fIVWvuMK5qOJx0KCBsmrVKuucirx333vfua47O377zYi+Wy0R\neOmll8qwYcOlqPFFaAe1SA4c0F9UfGn6JU89LSVKlLAvR7TNqYs5EoH4m6nHrbfcbIlDdY3TsWMn\np2tcfSwOMHV4dcUK091cXhYuetyZHf3JJx/LPS1aWF3Js+c8KmeddZZTJxWxb5h6X161qpOXc5Ed\nCEAAAglMAIGYwI2TjEXbt66fKbbx3Wf+d3jhs7w7ThULorq3ufuuZvLXX39Ji3vuMV2t7Xx5PHS8\nnM4I1u5YnfSik1+8Qcfi6ezpH3/80RI5XoHY31jPli1bJqVM1+uTTy6xBKw3DxVKDRrUl03Gv+M1\n11wjo8dEN8EmFgJRBeDSF16wLIC6yop36T4VujffdKPVBe9mNXvWLKt7vmLFSsZRd2zGhXp5cgwB\nCEAg1gQQiLEmnGb577UEYuJUOhUsiNq12r17N2tFlZo1a8pI4yjbK14iJT7ZLJ/36KNzpGy5cvLE\nE4tD5vvonDkyefKkLAJRxWPVyy+zumHVgXfNWrVCFmXZsqXS34xn1KXvVGRGs8yd3wJRnWxfeUVV\nqx4zZs6Siy66KGg9bP+LbpG+ePETMmrkSKtr/amnn5GTTz45aFpOQgACEEgmAgjEZGqtJCjrvnX9\nE6qUBSpkTlpIqELlojCPP/64PDhurDVZ4s47m0inzp2jElbeW2uXtXZd327GGNrj97xx9Fi7h7t0\nzuxydVsQv/32W7n9tkZWktdXrpLjjjsuWHLrnK6XrF24Gp43ljqdAKNB102eMWOGtR/sny6mjKee\nemrAJb8FopahceM7LLaDBw+RIwocEXA/++CF55+Xd955x3Ktoy52NGzb9rOxjjaQPWYFF+32b926\ntbWyi98zt+0ysIUABCAQDwIIxHhQTqN7YEH0p7HVojV0yGBZvny5ZZnq3buPXG9WV/E72JNeOnfp\nIk2aNA2ZfSg3Nzomr2fPHtb4xdVvvBkyvV7Ya1aEuaxKZctK95Bx1XPZZZdb8d999x1pZxx/hwqP\nG8umjvtzB78FonLu0/sB9y2y3b/wwotkpulatoOuCd2nT29rPKaeU6Fcr359ueOOxo6rIDsuWwhA\nAALJQACBmAytlERl3GssiJlzmHUMoo49tOc0581xMloQdSbw/WbJPZ0BW8H4Ihw5cpQ1vi8Wj8F1\n19ayZtuqC5rsZher1ax9u7ami7mQ6R5+zynK888/Z7mE0TWiX3t9pXM+2I6Oc1SBqOMRH3lkujMT\nWM/r2MpQQR2He7uj/RaIahkcOHCAVT+1BuYUdJKNe41nja8r3Dy1ZInpqn9cdNUbDeo78QEj7mub\ntaIJEIAABJKJAAIxmVorCcqKBTG6RlKhpOJQXcOor0MdbxjLrkqd+PL5559LczMLt1279iEL//TT\nT8mwoUOzjEH87LPPpPndd1np1IKYnTNpneSikzw0vPzKCjnxxBOt/Uj+8Vsg2jORdWznG2++ZVlt\nIymXplEBvNKsE61+JXVSjs46n23GcJ5zzrmRZkk6CEAAAnEngECMO/LUvmHmLOasdbQtiVmvZJ6J\n1fVkm8Vsu5y5/PLLZcLESUFnBIdiGMn5vsbnn/rvq1ylikydOi1kFioOVSR63dzozN7q1a620qnj\nbhW1ocLyl16yumFVRObUHR0qD/u83wJRfRaqNVXDrNmzjf/DC+1bRbxVi6J24esYxcaN7xRdN5oA\nAQhAIFkIIBCTpaWSpJyZfhATp7AZFYYmTmFyKMkvv/wiN91YV/7999+ASRw5JIvq8rPPPitDBg+y\n8pg3b76cbVY88QZdWaSBGU+n5fIKRI2r4wd1HOEZZ5whTyx+Mkt3sMZRq5q6ylF3PU2bNZNOnTrr\n6YiD3wJRC9LkzsaW5fY/l1xidYGHKpzWxdvlHSpu1y6dLR+S7lVeQsXlPAQgAIFEIoBATKTWSIGy\n6FJ7mWMPQ405tM/bW+8YRfu8vY3ueoEkEoivv/6adDdWphOMk+nlL7+S49Og3aG2uxsVb9OmTRWd\n3NKmdRspnM1sYnfGukRcQ/VPuGmTNVN47NhxcmbFik6UjaaLtIdxsbPTrFyiDrGDCUT1pajiT8ug\nE08GDx4c4ChbLWk6vm+V6XZVFzDqCkZXW4kmxEIgqjuhVq3utYp1a7160qVL14ByqjB84YXnZaUZ\nazlh4kSn+Lr0oXaX16p1rdMeenGLWUWm3q23WD4m+/UfILfccouThh0IQAACiU4AgZjoLZRk5du7\nrndClTijwvCEKk92hXnssQXGpc247KIEXNPJFDoBQsOKFa9Ir56Zy8zpCiDN7rorIG52BzoDVy1d\nun6yrh18lllzuIxxeq1uab744kupdFYladq0qbWKi3eSip3vUrOyy4jhw6xl+VT8VTJL9elSe1vM\nuEN7qT0Vh8NHjBCdARxtiIVA1DIpf20HDTrxplKls6RY8WJWPdSlz86dO626LXjssEPs0aNGWRNT\nTjnlFLPWdDk5ydTzWzPB6JtvvrHE4XnnnSdTpz3MWswWVf6BAASShQACMVlaKknKqQIxcxazbfnL\n222BJBKIagGcmY0/QO8j4BaI69evl8Z33G515U6e/JC1Gog3fnbHOplCxyOuXbvWiaZWyCqVq5h1\nhvtZE1natGltLIiBs5idyGZHBeXwYcPk44//awkj+9pRZr3kGjVqSNeu3URnJPsRYiUQtWzq83Hs\nmNHWGsrusqr1tG7dGy3xfdpppzmXXn75ZZk8aaL89NNPzjndOfbYY+Xmm2+Re1u1ynbyTkAiDiAA\nAQgkCAEEYoI0RKoUY+/XvRKqKhkVM50ZJ1ShYlQY7QL+x3TzFi9ePOI7aHfwOmP5UuvZGWXLBnSZ\nhpupuq1Rwbn9l+1y+umlrK5ruys83DwSIZ6uQ61Ww4MHD0rxU4tbTrB1FZhgQeP8YLrptc7//rtX\nihUrJioiVVQSIAABCCQjAQRiMrZaApd579emmzO/KeABVyHz8Dij4ihXQdiFAAQgAAEIQCAcAgjE\ncCgRJ2wCO5bdJUefdoLkzzBLlWlfsx28fmxifHzgn/2ye/NvUrTuXLsEbCEAAQhAAAIQCJMAAjFM\nUEQLj8CuN4fJL2+tlH27/w0vQYxiqUAtXvsGOaYyvudihJhsIQABCEAghQkgEFO4cakaBCAAAQhA\nAAIQiIQAAjESaqSBAAQgAAEIQAACKUwAgZjCjUvVIAABCEAAAhCAQCQEEIiRUCMNBCAAAQhAAAIQ\nSGECCMQUblyqBgEIQAACEIAABCIhgECMhBppIAABCEAAAhCAQAoTQCCmcONSNQhAAAIQgAAEIBAJ\nAQRiJNRIAwEIQAACEIAABFKYAAIxhRuXqkEAAhCAAAQgAIFICCAQI6FGGghAAAIQgAAEIJDCBBCI\nKdy4VA0CEIAABCAAAQhEQgCBGAk10kAAAhCAAAQgAIEUJoBATOHGpWoQgAAEIAABCEAgEgIIxEio\nkQYCEIAABCAAAQikMAEEYgo3LlWDAAQgAAEIQAACkRBAIEZCjTQQgAAEIAABCEAghQkgEFO4caka\nBCAAAQhAAAIQiIQAAjESaqSBAAQgAAEIQAACKUwAgZjCjUvVIAABCEAAAhCAQCQEEIiRUCMNBCAA\nAQhAAAIQSGECCMQUblyqBgEIQAACEIAABCIhgECMhBppIAABCEAAAhCAQAoTQCCmcONSNQhAAAIQ\ngAAEIBAJAQRiJNRIAwEIQAACEIAABFKYAAIxhRuXqkEAAhCAAAQgAIFICCAQI6FGGghAAAIQgAAE\nIJDCBBCIKdy4VA0CEIAABCAAAQhEQgCBGAk10kAAAhCAAAQgAIEUJhA3gfjXn7tSGCNVgwAEIAAB\nCEAAAqlDAIGYOm1JTSAAAQhAAAIQgIAvBOImEH0pLZlAAAIQgAAEIAABCMScAAIx5oi5AQQgAAEI\nQAACEEguAgjE5GovSgsBCEAAAhCAAARiTgCBGHPE3AACEIAABCAAAQgkFwEEYnK1F6WFAAQgAAEI\nQAACMSeAQIw5Ym4AAQhAAAIQgAAEkosAAjG52ovSQgACEIAABCAAgZgTQCDGHDE3gAAEIAABCEAA\nAslFAIGYXO1FaSEAAQhAAAIQgEDMCSAQY46YG0AAAhCAAAQgAIHkIoBATK72orQQgAAEIAABCEAg\n5gQQiDFHzA0gAAEIQAACEIBAchFAICZXe1FaCEAAAhCAAAQgEHMCCMSYI+YGEIAABCAAAQhAILkI\nIBCTq70oLQQgAAEIQAACEIg5AQRizBFzAwhAAAIQgAAEIJBcBBCIydVelBYCEIAABCAAAQjEnAAC\nMeaIuQEEIAABCEAAAhBILgIIxORqL0oLAQhAAAIQgAAEYk4AgRhzxNwAAhCAAAQgAAEIJBcBBGJy\ntRelhQAEIAABCEAAAjEngECMOWJuAAEIQAACEIAABJKLAAIxudqL0kIAAhCAAAQgAIGYE0Agxhwx\nN4AABCAAAQhAAALJRQCBmFztRWkhAAEIQAACEIBAzAkgEGOOmBtAAAIQgAAEIACB5CKAQEyu9qK0\nEIAABCAAAQhAIOYEEIgxR8wNIAABCEAAAhCAQHIRQCAmV3slfGn3b39L9m6YJwf+/C7ssh5R5AIp\ncEYzOaLoBWGnISIEIAABCEAAArEjgECMHdu0zPnvNxvLwf/9HFHdM06vLxlnto0oLYkgAAEIQAAC\nEPCPAALRP5bkZAjsWVEjKg4FTq0tBc/uEVUeJIaAm8DBgwclX7587lPsQwACEIBADgQQiDkA4nLu\nCEQrEPVuiMTcMY82dof27WTf/v3SsWMnOfPMM6PNLmHSv/baazJ37qOy/rvvpFChQtK9ew+5vk4d\n2b59u3z44Qdy5ZVXSeHChQPKm6osAirJAQQgAIEwCCAQw4BElPAJ+CEQM0rVlnxHF5ODf64VObgv\n/Ju7Y+7fJ/mOryoFSjZ0n02K/TVr1sjSF16QTZs2ys8/b5Mjj/w/KV2mjFS7uprcULeu5M+f39d6\nVL70Etm3b588/Mgjcskll/qad15lNnPGDJk2bap1+4yMDGvboWNHadz4TmnUsIGsX79eqlWrJuMe\nHB9QxFRkEVBBDiAAAQiESQCBGCYoooVHIFqBmCkOi8vB3UYcHtgf3k1DxDporGIFzx4X4mpinn7o\nockyZ/Zsp3DaNapdpHaoVKmSEXLT5ZhjjrFPRb1NNVG0ceNGua1RQ0v0Nm/RwhKFRx99tOzZs0eK\nFCkijcw1tSpWr15Dxo4LfD5SjUXUDwcZQAACaUsAgZi2TR+bikcjEDNKXW8sh/6IQ7t2GRVH2btJ\nsR07doysXbtW7r77btPdW1FOOukkq0v0pRdflBkzpss///wjNWvVklGjRvtWn1QTRYsWLhTleOyx\nx8rrK1dlsbj+9ttvsmbNR3JF1SvkKCMc3SHVWLjrxj4EIACB3BBAIOaGFnFzJBCJQMxfuLQUONl0\nbRY6Vg7+ZSyHcsD8p1YznVgQ3TajwgiTR/KEbdt+llNOKRa0wI89tkAeNBYvtSqq8PGOnwuaKIyT\nqSaKRowYLkuefDJoF3JOOFKNRU715ToEIACBUAQQiKHIcD4iAvu2PZOZztZ1di7ZHR/4R2TvTuMe\nZ4uJfahbWTWie6hdhMfJJhBtXMG2Orni+trXWZceMd3M/7nkkmDRcn0u1UTRgP79ZOnSpVK/fgPp\n3adPrnikGotcVZ7IEIAABFwEEIguGOxGT2Dvuty9kKO/Y/Y5ZFQYln2EJLr677//ymVVKlslnjdv\nvpx9zjm+lD43omjnzp2ywUzwKFCggJQtVy7XYyF37Ngh3377rRQrVkxKlSrlS/m9mcRDIB44cEC+\n37BBfv31VzmjbFlrKIC3HN7j/WZM7ObNm2Xr1q1yQtGiVjp7Ao03LscQgAAE8poAAjGvWyDF7o9A\njF2DfvnFF9KsWVMp+P/s3Xd0VGUax/FHBVdQF44InlAEXBJpiopHECy7sEqkSy8qRRACKlKkl9Cr\nsHSlCQEB6UF6ERAEdde1ACv1uMB6PMiRlVAUwrr7Pm/2DnPJTBImI7kzfO85OLl17v3c+ePnW2/9\nnWzesuWaw1mwO8ssIGoP59mzZ8nSJUtEA6L/UqRIEXmja1epVq26/+Z0f69du0amTpkiJ0+e9O3T\nDiPaiaRp02ai96DLvKQkKV/+Ad8xWf0jNTVVKlcyzRSCLDExMbJm7Tq7t1OnBPn0k0+kXfv2kpDQ\nyXVGZhY///yzjB0zRjZt2ij6t7NoW1EtrXzqqaedTb5PDYbzzXMtWrTQBkpnh4ZDDZezZ88xPdXz\nOJv5RAABBDwhQED0xGuInptIPdQ/DC0Hs9vy8Mr5ueKGRQWuhrSOHTrIF1/8XVq2fEG6de8etufK\nKBQdP35c3uzRQ44cOSy33HKLxMbGSWxcrJxNSZFvvvnGF/jq1q0nAwcNSjcgtfbAHjVqpG0TqDes\nQa1cuXKSy4SjvV9/Ld9995106NBR3nnnbfs8oQZE9XGq38+dOy+XLl20QfqOO9I6oRQqdI+8Zzqv\n6BJqQDxmekd37dZV9FN7kT/ySEXJnz+/cfiHLRXVa+tQOq1atdY/7aLPP2BAf9FORupX+fHHJcaU\nnmrJ46FDh2xp4vYdH9kONc45fCKAAAJeECAgeuEtRNE9aEAMR+eSKxHPabwY2mfuuKERp6tVyefO\nnbM9lrXd4cGDB2Tx4sU2mNSoUUMSBw8x4efWsD1XsICo4ebltm3kq6++Ei0pHDlqtA13zhdrNasG\nuzmzZ4v+PXz4CIl/7jlnt/3csGGD9OvbxwbHjh0T5OV27XwhUkvWZpixF2fNmuk7Z+68JHnggWsv\nQfRdwPyRWRVzKAFRLVq3aiX79u2Vio8+KiNGjJS7777b97UL5s+XCRPG21C6KjnZdDS6x+778ssv\njGFb0dLCOe/OlbJly/rOUbOPduyQKlWrhvV9+r6APxBAAIFsCBAQs4HHqekFLh8aYDZmv/dxuAJi\nrrgh6W/S41vWrVsrA/pr0L6yFC9RQnr37iOPPRa8GvXK0df2V7CAmJy8SoYMHmzbG65YudKExKIB\nLzx06BBZZfZr7+uVq1bZWUv0QA2AjRo2EC2F1Grknr16BTy/V6+esmXzZrvPqwHxg9WrJTFxkBQo\nUECWLlsu+fLlS/csr7RvZ4bP+VyaNWsmb/ZMe1YNz1OnTpHSpcv4SjDTncgGBBBAwIMCBEQPvpRI\nvqVUGxC98wSRWIK4a+dOmTZtqqkmvWSrIs+ePWtBf29CSa1ataRz51fD2mYtWEBs3eol2bt3rzRu\n0sSG02Bv9fvvv5c6tWvZAb1nmUD08MOP2EP37Nktr3bubAPmajMzTLDhe742Vc1tWrey53g1IGrb\nT20DqqWg7V95JSCFM/5ihQoVbGmhHrRkyfsyetQoyZs3ryxfsVIKFSoU8Fw2IoAAAl4TICB67Y1E\n+P1cPjTQPoFTIew8Tk6tR2IJomPmfJ4/f17Wr18vSfPmmTZ7/5L77rtP5i94T2677TbnkGx9BguI\nf/rj05Ji2hqOGTtOqlfPuBNKfI1n5dSpU7YdYr169e39aLX42DGjbW/nJUuWBr1Hfb6nnnzC7vdq\nQNT70/vUji1/MB1LAi379+2XBQvm21LGTZu32EN0XMtGjRrJBXOuBuSEhASpER9PlXIgQLYhgICn\nBAiInnodkX8zaSWI3qlizh2BVczBfgUaNl568UVbqviC+ezatVuwQ69pe6CAqL2V/1y9mr3OwkWL\nzawu92d4zbZtWtu2iq3btJHXXnvdHvvWuHGycOF78sSTT8rEiZOCnq8dTPQedAm1k4r/xcPdBlE7\nlNR49hn/r8j077/+7XPfDC6fffaZ9OvXV06bGVx00erpBg0bSvPmLWyYzPRiHIAAAgjkgAABMQfQ\no/krnRJErzxjNJQg+ltqpxDt2KFtEleYKstwLIECovYurluntr38kqXLgpaaOd+vHTG0Q4ZWv2o1\nrC59+/SWjRs32o4r2oEl2OI/vqMXA6KOW6hV6LpoFX++fPmDPYpve9du3XwBUTdqM4Hly5bJ++8v\ntlMn6jbtCd2nbz+JNyWKLAgggIDXBAiIXnsjEX4/tEH8bV/ghx9utcPOaK/YPZ986usRnJ1vDRQQ\ntYdt1SpV7HAxb42fYKety+g7aj4Xb4e8GW569zqBZ+LEv9hqcf82eYGuocPGNGjwvN3lxSpmtajy\neGXRsRYnTZosVZ9Iqw4P9CyZbdNrbdu2zXZc0efWoW/mvPtuSGM/ZvZd7EcAAQSyI0BAzI4e56YT\n0IDonQpmkVwROMxNOlS/DVplq1W3WuWrVb/hWAIFRL1us6ZN7Ph+mY27qFXftU3JmoafhQsXyf2l\nS9vbWrFiuQwfNszOGb1h4yZf7+ar71lLGbW0URcvBkS9rwbP15djx45JQqdO0q5de92UrUVLFJua\nzj9q16JFS+luxppkQQABBLwkQED00tuIgntJGwfROw+SO4IGytaAdfPN/hNQux21rZ629du/f78p\ncWso/a4aCsd9dNbXggXEuaZka/LkSbZDhfbALVy4cMCLagjUMKhT/82dO8/3DN9++600adzIBscu\nXd6Ql8w4glcvOhRO0yaNRY/VxasBccL48bYDirYfXLUqWbRHeaBFx0vU5aab9H+TMl66m0G3t2/f\nLrXr1JHBZmxLFgQQQMBLAgREL72NKLgXZlIJ/SVuN1WPa9askddefz3dPMXaUWLc2LGyefMmG04W\nmdJDnc/YWbQd3/Tp0+z0b53M9HHBAoxzvP9nsICogVTD2z9NVWixYsVkxMhR6QZ6njVzpsycOcNe\nLmn+AilTpoz/pWVwYqKsXp1sSw8HDkr0VT/rQVqKpvt1dpiffvrJnufVgJhy5ozUq1fX9uqu8NBD\nMnTo0HTjQuoYiBPGvyUzZsyUvLenzeCiJb46oPYzzzzrCo3axlNLJdV4wMBBUr9+Ws9vFx4rCCCA\nQA4KEBBzED8avzr1UF9PPVbuuOCdIzx1o+Zmtm37UHqYKfS0FFEDWcmSJU31bD47tI2WGv7yyy92\naJsxY8amawenwbH3/weiDlZaF+x5gwVEPV6n03uzR3fRsQ61vVxcnJlqz0y3l5Jyxuw7YKtIdW7o\nbqZTho6XePWiQ9+0b/eynDhxwu7S83XQ6B9P/2jHWMyVK5dpjzdNmjdravd7sZOK80w6/3KimU7w\n4sWLNvCWKVNWSpQsIf8+fdpMRXjUvic9dueuj+24h/r3mNGjbccUnVmlVKlSUtCMg3jYTLF38OBB\nGw4ffPBBmTb97bCOa6nfy4IAAghkV4CAmF1BzncJaEB02iA6O9LWr4yEeD33R1JA1Gn13nl7uuj0\ndBoG/RedWq9mzZrS0ZQOFixY0H+X/fvo0aPSonkzW507efIUO+dvuoOCbMgoIOopOv7feFMytsm0\nFbxw4YLvKtpRRgOO9sTVMBts0fOHDxsqW7dutaFIj9NQWb58OXuulrDpmIu66IDaRYoEnrHFHpCF\n/4R7mBv/r9Sq8CGDE82Ue/ustf++KqZTT+s2baVixYq+zdq+cvKkiTZg+zaaP+68805TIlnf9vrW\n3swsCCCAgNcECIheeyMRfj+pB0xnA21G96v5d/Wn82xXb3fWf4P9ueNGOVeNmE8Nhzq0yg8nT8qv\npk1b8eL3SkxMYV/bvmAPouPsXTRVzTExMcEOydZ2bV+n93X8+DEpVLCQHWpHSwCzumg1+OHDh+Wy\n6Q1cxsxJ7MwnraWUL7RsYUsotWe2llR6fdFSxCNHjsgZU/WsVf1qnidPnoC3rW7HTQeXH079YHqF\np9rjtYTYef6AJ7ERAQQQyGEBAmIOv4Bo+/rUA73kJhP4/usXEHNyPXfc6GgjjrrnWWNKDQcNGihF\nixaV5NUfRN3z8UAIIIBAJAoQECPxrXn4nk+vbSW3FysgN+c2pUBOXbL51M6dtmOnU9N81We49/96\n8T9y/sSPclfteR7W4ta0F3Nj09NZxwT075m9e/du+fjjXVkG6tChox1OJ8sncCACCCCAQIYCBMQM\nedh5rQIpO4fLqV3b5PL5S9d6aliP14AaE19L7qjE+HJhhb3Gi2nHjnLlygVsV6jzE481PbO1l7P2\n+k02w8fcVaCA/QadLUZnjcnqsnbdelev7qyex3EIIIAAAoEFCIiBXdiKAAJhEHijSxdbElipUmU7\nRI62vTtvOrpoieGOHdvt7Cvaa7tnz16uXtDaXlH/ZXW53QTMrIw9mNXrcRwCCCBwowsQEG/0XwDP\nj8BvKDB92jRJSkqyU/YF+prY2FjpP2AAU80FwmEbAgggkIMCBMQcxOerEbgRBHSYmz2mTaGOpagD\nfusQL/eantnF7y0upUxAjIReyzfCe+IZEUAAAX8BAqK/Bn8jgAACCCCAAAIICAGRHwECCCCAAAII\nIICAS4CA6OJgBQEEEEAAAQQQQICAyG8AAQQQQAABBBBAwCVAQHRxsIIAAggggAACCCBAQOQ3gAAC\nCCCAAAIIIOASICC6OFhBAAEEEEAAAQQQICDyG0AAAQQQQAABBBBwCRAQXRysIIAAAggggAACCBAQ\n+Q0ggAACCCCAAAIIuAQIiC4OVhBAAAEEEEAAAQQIiPwGEEAAAQQQQAABBFwCBEQXBysIIIAAAggg\ngAACBER+AwgggAACCCCAAAIuAQKii4MVBBBAAAEEEEAAAQIivwEEEEAAAQQQQAABlwAB0cXBCgII\nIIAAAggggAABkd8AAggggAACCCCAgEuAgOjiYAUBBBBAAAEEEECAgMhvAAEEEEAAAQQQQMAlQEB0\ncbCCAAIIIIAAAgggQEDkN4AAAggggAACCCDgEiAgujhYQQABBBBAAAEEECAg8htAAAEEEEAAAQQQ\ncAkQEF0crCCAAAIIIIAAAghct4B47mwK2ggggAACCCCAAAIRIEBAjICXxC0igAACCCCAAALXU+C6\nBcTr+VB8FwIIIIAAAggggEDoAgTE0O04EwEEEEAAAQQQiEoBAmJUvlYeCgEEEEAAAQQQCF2AgBi6\nHWcigAACCCCAAAJRKUBAjMrXykMhgAACCCCAAAKhCxAQQ7fjTAQQQAABBBBAICoFCIhR+Vp5KAQQ\nQAABBBBAIHQBAmLodpyJAAIIIIAAAghEpQABMSpfKw+FAAIIIIAAAgiELkBADN2OMxFAAAEEEEAA\ngagUICBG5WvloRBAAAEEEEAAgdAFCIih23EmAggggAACCCAQlQL/AwAA//8nahMiAABAAElEQVTt\n3QeYFMXa9vEH2AWVoIKSo8LiEQMcBUWMIIqCyJEMCqLkIEGQHCQjBoISlSSCCqKSTEcRSR4zKgq8\nBJUgBkCJwi7sW0+tPc7m3dnp3emZf3+fTOqurvrVXtd7n+qu6lzxZhM2BBBAAAEEEEAAAQT+FshF\nQORvAQEEEEAAAQQQQMBfgIDor8F7BBBAAAEEEEAAASEg8keAAAIIIIAAAgggkEiAgJiIgw8IIIAA\nAggggAACBET+BhBAAAEEEEAAAQQSCRAQE3HwAQEEEEAAAQQQQICAyN8AAggggAACCCCAQCIBAmIi\nDj4ggAACCCCAAAIIEBD5G0AAAQQQQAABBBBIJEBATMTBBwQQQAABBBBAAAECIn8DCCCAAAIIIIAA\nAokECIiJOPiAAAIIIIAAAgggQEDkbwABBBBAAAEEEEAgkQABMREHHxBAAAEEEEAAAQQIiPwNIIAA\nAggggAACCCQSICAm4uBDVgXO/LpeYnctkLNHd2S4qDwXVpWoS9pInsJVM3wMOyKAAAIIIICAewIE\nRPdsI7Lkk+taSfxfBwJqe3TZxhJduVtAx3IQAggggAACCARPgIAYPEtKMgIn3qudJYeokvUkb5XH\nslQGByOAAAIIIIBA1gQIiFnz4+gkAlkNiFocITEJqoc/7tq1S558cqJtwbPPPie5c+fOdGumTp0i\n33//vdx9193S4J57Mn08ByCAAAIIZF6AgJh5M45IQyAYATG6XD3Jlb+4xB/9TiQ+Lo2zpfHTmTjJ\ndUEtiSrdNI2dvPPT2bNnZdIzz8jxE8el6tVV5Z6GDT1R+c2bN8tD7R60df30s88DCohdu3aR/338\nsbTv0EG6dOnqiXZTSQQQQMDrAgREr/dgiNU/qwExIRyWkPjjJhyePZOl1sWfOWMuVz+VpTJC5eC3\nVq+WIUMG2+poOBwx4vGgV+306dOSN2/eoJZLQAwqJ4UhgAAC2SZAQMw26sg4UVYCYnS5u8zIYXDC\noaMdfdkE561nX+Pi4uS+//xH9u3ba9sQ7IB44MABOzq5adNGWfvRuqA6ERCDyklhCCCAQLYJEBCz\njToyThRIQMxdqLxEFa0hkq+gxB8zI4dy1vwXb/7LleXX6Jhxpgxvby+//LJMfGKCREVFiYbFYAfE\nzz79VDp16mgv/+pl4GBuBMRgalIWAgggkH0CBMTss46IM8X98npCO51857Q6rc9nT4nEHjbL4+wz\ne/99WVkzov98hgA/ez0g/vLLAWnapImcd955cs2118rbb70lDRveK8NHjHBks/xKQMwyIQUggAAC\nYSdAQAy7Ls3ZBsVuT7hPLmdr8c/Zo2PG/PPBg+8e6dFdNmzYIOPGj5fPP/tMli5dmuMB8fjx4+Zy\n9z757ddf5aKLLpKy5crJueeem6JuaiOIOhL63XffSR4zq7lSTEya9z5mZpLKzz//LD/8sFtKliwl\nZcqUydCkmD/++EP27Nkjx48dk4qVKtk2pdgYvkQAAQQiSICAGEGdnR1NJSAGT3nlypUyfNhQue66\n62Ta9BkybuyYoAbEAf37y3vvvZtqhdu3N7OGuybMGo6Pj5d16z6ShQsX2qDqf1CePHnkgQfaSMdO\nnSRfvnz+P0nSgPjzz/tl7Nix8tWXX8pff/1l99Xjb775Fhk2fLgUKlQo0fH6Ib2AqHV76aWFMm/u\nXDl8+LDveA2t7R56SNq1eyjFoLht61aZPn26rF+/TrQMZytSpIg83L69NG/ewvmKVwQQQCDiBAiI\nEdfl7jY4dvuQINw5GKw7EM2aijGj3W2wS6XrCF3rVi3ljJmJ/fIrr0ipUqWDHhBHjx4laz/8UGJj\nY+Xo0aO2JYULF/a1qHXr++XBdu3s5x9//NFMlGlk3+uoYaVKMVK8RHHZ8X//J9988439/j/33Wdm\nWg/1Ha9v/APi8hUrpVPHDnLMjNRdccWVUrRoUdmx4//sGoe6jI+2cfbzs6VYseKJykgrIJ44cUIG\nDRxow6sGzarVqtmRQx0R/PKLL0TLrXXjjTJlytREZeroZWdz36WOhup5/33Nv+3ve/fsNe35Wpo2\nayZ9+/ZLdAwfEEAAgUgSICBGUm9nQ1s1IAZjckmwImJ0zKhsaHVwT6GBTdcO1BAzaPBgady4iT1B\nsEcQnVpn5B5EDYh6ubtfv8fkxptucg61r8+bUDd92jQ7Srf0tWVSzlxydjb/gFiyZEmpWLGSPP74\n41Lo/POdXewl9MGDBtqQeu+9jexIou9H8yatgDhl8mSZP3+eDZUTJ06UKldc4TtUL8n36tVTNEQ+\nMfFJqVOnju+3Lp07ySeffCK33367uXw/IdEI46/m0rkGzGuuuca3P28QQACBSBMgIEZaj7vc3rjt\nOoKU9dnHwQqIUTEjXW5x8IufOPEJeXnx4mQjXzkZEE+dOiW5cuVK8V5BDbR33lFX/vzzTxkzZqzU\nu+suH4p/QCxfvry88uoSOxvbt8Pfb5YuWSLjxo21Qe31N96U0qVL+3ZJLSBqaG3erKkdZZ01e7ZU\nq5YwCug70LyZOXOGzJo50wbTV1591f5kRxVvuEFOnz4lz0yaZC9v+x/DewQQQAAB83/Jzb03/9x8\ngwgCWRSItQExi4UE8XCvjSC+++47MnDAADsittgsb3O+30hbTgbE9Lqk3YNt5euvv7b3LOq9i87m\nHxDHjhsvd955p/NTolcNmXfUvV2OHDkij48cJQ0aNPD9nlpAdEYPr61e3QTBWb79/d9s375dWrZo\nboPnho2bfAG3Tu3bRCentGrVWh7t29f/EN4jgAACCBgBAiJ/BkEViNs+zJaX1qo2ukN2/e6lEcQt\nW7ZIh/YP2/vmZj//glx55ZWJ+iZUAuL+/fvl22+/sZdh9Z49vRy7dev3cvLkSWnTtq307NnLV2//\ngPjGm8vt/YG+H5O8adumjS1XJ7t06tTZ92tqAbFP716ydu1ae+n49rp1ffv7vzlx4qSMGvm4/WrZ\nstelnBnF1O2pJ5+URYtesu/r169vJrM8LBUqVLCf+QcBBBBAgIDI30CQBRJGEHOZUp0ImLOv0R65\nxPzLL79Imwful99//10GDxki993XOFnP5HRAXL78TXl+9vO+J7o4FdRLz7nNcjU6oSatgPi/Tz5N\n8fKyU04/M5L3wQfvS6NGjWTosOHO16neg6iTZvQyc0a3GeZSc/XqZkF2s+kl8zFmks6qVat8h+tI\nZOvWrbnk7BPhDQIIRLIAI4iR3PsutN0ZQXSh6ICK9MoIYrduXeXjTZvsgtg33ph4EojT8O++2yJ7\n9+41s25LSZUqCZMx+vXrJ4XNsixZ2TIySeXpp56yS8noeXQSSh0zuUNHOEuXLmPvF3zM1EOXwUkr\nIOpTWjRIpra1f/hh+fLLL+zSNN279/DtltoIYoP6d4uue6gLiFeOqezbP7U3TcyC484IorOPnm/B\n/AV2qRu9N1G3G8z9iaPNvZT+l/ed/XlFAAEEIkWAgBgpPZ1N7eQexMCgW5klbXRdvsxuy1essMu0\nZPY4//3TC4g7d+6UFs2b2UvfEyY8ISldzu1sLgt/+uknaQbEj9atl/z58/ufOtF7J/Dp6KGOIjpb\nagHRmYmcNJQ6x2XmVZ9HPX/ePLPO5BLbTl2XUSewsCGAAAKRKkBAjNSed6ndGhBD5wKzroPojWVu\n1qz5QP784880e2X16lXy+eefy9VXX22fpqI733HHHXJeGqErzQL//jG9gPjG66/LqFEjpXjx4rJq\n9VspFqmzmPXyeNKw5n8P4py582zdUypg165d0qxpE7tgtd5/+e9//zMjObWAOGb0aFm27DWpUaOG\nTJ8xM6ViM/3dwhdflGeeedoe9+Haj6RgwYKZLoMDEEAAgXAQICCGQy+GUBsS1kEMnQpFe3Sh7JQE\n3boHccu330qbNg/YU6Y0yjdv3lyZOmWKXHDBBfLW2+/4ZgI7dfxwzRp59NE+9mNaAbF27Toy0UwO\nSWnTJ8bok2N0nUSdve1/KTq1gPjRR2uld6+ECTGzzL2Raa1bqJeP/ctMqQ763bZt26RVy4QnqKxY\nuco8sq9karvyPQIIIBDWAgTEsO7e7G8cT1JxzzytgHj69Gnz2LhpdiZx1y5dEy1EnV6NDh06JHVv\nT1hEeuSoUVK//j9LzOixem9hr549bTG6UHaLli19RW7+6iuzeHZfuzyNLlWTVkDUgx4y9xl27txF\n9KknuukqW88996zMnTPHfn7q6Wfk1ltvte+df1ILiPp7xw7t7ahqsWLFZMTjI+1oonOcvuoTaaZM\nmWyXzbnpppvtT7qUzuTJk6Rjx05mOaFi/rvbGc9vvPGG/X71W28n+o0PCCCAQCQJEBAjqbezoa2x\n2wdlw1kyforomLEZ3znE90wrIOozlfXZyrrpMjMa1DKzOUFLj7n88suloHkmcrWq1aRDx44SFxdn\nZ1jr6JpuOqqmE0N0iZvNm7+Sxmbyh04WWb9uXZoBsd9j/WXiExPs8TrB5YwZ1fvm62/kl18O2HL1\n0X59Hn3Uvvf/J62AqPdH9uje3Zahs6ljKleWipdeamdU79ixU3bv3mXfTzJPXHECoi7oXfu2W+1I\naKVKlezyNrocztdfb7aXyXWkcZxZszGley3968V7BBBAIJwFCIjh3Ls50DYNiM49iM7pEz47y92Y\ntZXMD/rJ2dz8PVICogYlvTSql1KnTn1Wrq9Z0+HN0KsuFzOg/2OiC0s7W48ej/iexawBUAPqhg0b\nnJ/tKOU9De6R3n362Eu9GZnF/Prry+yTTfR+RWfTexsfMaE2tUW00wqIWoY+R3r8+HHywfsf2Kej\nOOXq66UVK0pbE5br1bvLN2r5119/2TC9ceMGGx7997+6alXRhb51JjMbAgggEMkCBMRI7n0X2h67\ndYCIrmSiK4YkfXXOl/R757MLv0fHjHdKDfvXQwcPyilzqblEiRIBtVXD5Z6ffrKjaBXNyFpKy7zo\neo0aJvV+RB1901G7QDZdXFtDp5Zx4YUXBlJEsmO0/lq3/eaycpGLikjJEiXTvNSul5p12aCDB3+X\nQoXOtyObF198cbJy+QIBBBCIRAECYiT2uottjt3aX3KZwBfvFxBz8nN0zAQXW0vRCCCAAAIIhKcA\nATE8+zXHWnVoVVvJX6aI5I42kxCca8nmVZ/4bQebnCvNSV6D/fvZU2fk+J6DUrjB/Byz4MQIIIAA\nAgh4VYCA6NWeC9F6H1k3Rn5bv0bijp/O0RpqQC1Rr74UuK5vjtaDkyOAAAIIIOBFAQKiF3uNOiOA\nAAIIIIAAAi4KEBBdxKVoBBBAAAEEEEDAiwIERC/2GnVGAAEEEEAAAQRcFCAguohL0QgggAACCCCA\ngBcFCIhe7DXqjAACCCCAAAIIuChAQHQRl6IRQAABBBBAAAEvChAQvdhr1BkBBBBAAAEEEHBRgIDo\nIi5FI4AAAggggAACXhQgIHqx16gzAggggAACCCDgogAB0UVcikYAAQQQQAABBLwoQED0Yq9RZwQQ\nQAABBBBAwEUBAqKLuBSNAAIIIIAAAgh4UYCA6MVeo84IIIAAAggggICLAgREF3EpGgEEEEAAAQQQ\n8KIAAdGLvUadEUAAAQQQQAABFwUIiC7iUjQCCCCAAAIIIOBFAQKiF3uNOiOAAAIIIIAAAi4KEBBd\nxKVoBBBAAAEEEEDAiwIERC/2GnVGAAEEEEAAAQRcFCAguohL0QgggAACCCCAgBcFCIhe7DXqjAAC\nCCCAAAIIuChAQHQRl6IRQAABBBBAAAEvChAQvdhr1BkBBBBAAAEEEHBRgIDoIi5FI4AAAggggAAC\nXhQgIHqx16gzAggggAACCCDgogAB0UVcikYAAQQQQAABBLwoQED0Yq9RZwQQQAABBBBAwEUBAqKL\nuBSNAAIIIIAAAgh4USDbAuKxo0e86EOdEUAAAQQQQACBiBMgIEZcl9NgBBBAAAEEEEAgbYFsC4hp\nV4NfEUAAAQQQQAABBEJFgIAYKj1BPRBAAAEEEEAAgRARICCGSEdQDQQQQAABBBBAIFQECIih0hPU\nAwEEEEAAAQQQCBEBAmKIdATVQAABBBBAAAEEQkWAgBgqPUE9EEAAAQQQQACBEBEgIIZIR1ANBBBA\nAAEEEEAgVAQIiKHSE9QDAQQQQAABBBAIEQECYoh0BNVAAAEEEEAAAQRCRYCAGCo9QT0QQAABBBBA\nAIEQESAghkhHUA0EEEAAAQQQQCBUBAiIodIT1AMBBBBAAAEEEAgRAQJiiHQE1UAAAQQQQAABBEJF\ngIAYKj1BPRBAAAEEEEAAgRARICCGSEdQDQQQQAABBBBAIFQECIih0hPUAwEEEEAAAQQQCBEBAmKI\ndATVQAABBBBAAAEEQkWAgBgqPUE9EEAAAQQQQACBEBEgIIZIR1ANBBBAAAEEEEAgVAQIiKHSE9QD\nAQQQQAABBBAIEQECYoh0BNVAAAEEEEAAAQRCRYCAGCo9QT0QQAABBBBAAIEQESAghkhHUA0EEEAA\nAQQQQCBUBAiIodIT1AMBBBBAAAEEEAgRAQJiiHQE1UAAAQQQQAABBEJFgIAYKj1BPRBAAAEEEEAA\ngRARICCGSEdQDQQQQAABBBBAIFQECIih0hPUAwEEEEAAAQQQCBEBAmKIdES4VOPMr+sldtcCOXt0\nR4ablOfCqhJ1SRvJU7hqho9hRwQQQAABBBBwT4CA6J5tRJZ8cl0rif/rQEBtjy7bWKIrdwvoWA5C\nAAEEEEAAgeAJEBCDZ0lJRuDEe7Wz5BBVsp7krfJYlsrg4KwLxMfHS65cubJeECUggAACCHhSgIDo\nyW4L3UpnNSBqywiJOdO/f/zxh0yZPFk++eR/8ttvv0mlSpVk4UuL5OzZs7JxwwYpWLCgXF2V2wBy\npnc4KwIIIJC9AgTE7PUO+7MFIyBGl6snufIXk/ij34vExxozHcmKz9zrmTjJdUEtiSrd1HPmCxe+\nKLt3706z3vfd11iqVKmS5j6Z+fHQoUPSonkzOXjwoD3svPz5JbcZQVz70Tr573//K/0f62e/X7T4\nZalcuXJmimZfBBBAAAEPChAQPdhpoVzlrAbEhHBYQuKPfydy9oxfU52A6PdVorfJf48/c8Zcrn4q\n0V5e+PDA/a3lu+9M+9PYxo4bL3feeWcae2Tup6FDhsjq1aukQoUK0q/fY1Ljuuvkl19+keLFi8v7\n778vj/Xrawtc/PIrEhMTk7nC2RsBBBBAwHMCBETPdVloVzgrATG63F1m5DClcBh4m6MvmxD4wTl0\n5L0N75G9e/dK27YPSvESxVOsxfXX15SyZcum+FsgX956y81y9OhR6d27j9z/wAOJitD7Ef/38cdS\nsFChoI5aJjoJHxBAAAEEQkqAgBhS3eH9ygQSEHMXKi9RRWuI5Cso8cfMZWXRkcOkI4KBfY6OGec5\n1NtuvUWOHDkir7/xZlBDYGoQenm57u117M9cQk5Nie8RQACByBIgIEZWf7ve2rgDr2f+lsH4UyKx\nh83yOPsSLivnNtU8a/4LwqvXAqJOCLmuRnU7MeT9D9bIBRdc4Hqf7du3Txre08Ce5933/itFihRx\n/ZycAAEEEEAgtAUIiKHdP56rXez2wSFV5+iYMSFVn/QqoyOHOoKoS8x88ulnkju3pmR3t2AGxDPm\nvs+dO3fKUdOOf11+uZx33nnuVj6F0jVk//jjjzZk62X46OjoZHsd+fNP2bptm5xvLptXuOQSyZs3\nb7J9kn5x8uRJ+emnn+T333+XMmXK2P9YCiipEp8RQCBcBAiI4dKTIdIOAmLWOmLfvr1mNO8eyW9m\nEX+0bn3WCkvn6GefnSpz58xJda8RIx6Xexo2lM2bN8tD7R60+3362ecphla9TD1q5Ej5+ONNcvr0\nabuvhtsrr7pKxo+fIEuWvCpzXnhBbrjhBpn67HO+c27atFG6d+smOmt6XRrtvfOOujaYjZ8wQerW\nvcN3vL7REde4uDiZMXOmXHTRxXbGtYZU3SY++aTUrp1w+Vw/672UEyaMtwFSP+uWJ08euf3222XQ\n4CFSoECBhC/9/tW2zZw5Q1YsXy6nTpnR7r83rXPt226Tx0eOcr7iFQEEEAgbAQJi2HRlaDQkbvsQ\nU5EAlqXx3XPo3GsYnNeoGG/9H+/vv/9e7m/dSkqWLCkrVq5ytVM1sC1evEh01O9PM6Km2/nnn28D\nk77va2Yz60zp9AKizrh+tE9v+fXXX81IXD75178us6NyOtHmaxMuixUrJldeeZWdJe1mQJw2bbo8\n99yzsmXLFntOXctxwhNP+ALijBnT5fnZs0Un3ehSPZdd9i/R8PfFF5/L8ePHpVSpUjJv3nwp7HeJ\nXUca23doLzt37LDh8YYbatnX/T/vl+/MeXSWt87sZkMAAQTCTYCAGG49msPtiU0zIDqVSy1ABv/3\naI8FRB3h6tq1i73kWbRoUTsyVsyEkHJly8kVV14h997bSKKiohyooLymd4k5rYCol3ObNW1i120s\nX768PP3MJClXrpyvXjt2/J9ZIqefb8SuZs0b5Nnn3BlBvOmmm0VHYJ+ZNFlKly5tZ2XHm/oVMqF3\ng1no+5Ee3a3d0GHDpUGDhHsutaI///yz9Hykh7003rx5C3msf39f/Z9/frZMnzbNXk6ev+BFG6Cd\nH/WSs/bXrWYUkQ0BBBAINwECYrj1aA63J3b7UDN+mMuMB5pHtZm6JIwD5txnr40gvvfeuzLAL6Ak\n7U69900vhdaoYWZ9B2nLSkBcuXKlDB821AbaN5evEA21Sbft27fbUVEdqXQzIOq9hloHHbH032Jj\nY22I1fsHu3XrLg89/LD/z/b95599Jh07drD3K65a/ZZvoo6GdQ2B99//gPTu0yfZcXyBAAIIhKsA\nATFcezaH2qUBMZQ2r40g6uPu9HKv3oOoEyd0bcL9+/fZEbBXX3nF3gOn97698sqr9jJ0MKyzEhAf\nbNtGvvnmG2nSpIkMHJT6BKVu3brKx5s2uRoQ69evLyNHjU5G4owe5suXTz5c+5F1TbaT+cJZC1Iv\nVV93/fV2F32CjD5JRp9aM2fuvKCP3qZUD75DAAEEQkGAgBgKvRBGdYjbPiykWhMVMzKk6pOVyugI\nmD5l5dixY8mCVlbKzUpAvO22W0Xv03ti4pNSp06dVKvx9FNPyUsvLUxW72BOUuk/YIA0a9Y8WR30\nvHp+vQTeqXPnZL87X0yeNEkOHDhgRmgHS+PGTezXH374ob2/Uj9cZSbcdOnaTapXr25nmTvH8YoA\nAgiEowABMRx7NQfbxAiiu/hLlyyRcePGio6Grd+wMcUZxZmtQaABUYPqLTffZE/34sKX5HKzrE1q\nm04ecXsW8zMm4N188y3JqjBm9GhZtuy1ZN+n9kX7Dh2kS5euvp81YE6dMkX0UrVu5UzQbNmipTS8\n917bD74deYMAAgiEkQABMYw6MxSa4owgOnOQnTrl1OdwGkFUS12+RSeF6LZs2es2rNgPWfgn0ID4\n4w8/yH33/ceeOb2nvmjAmjdvruvL3FSvnvzezOHDh8nKFSvsRBOdyJLedr25vFzrxhsT7aYzshcu\nfNGWo5NTdNPJOOPMEj46I5oNAQQQCDcBAmK49WgOt4cRRHc7QC+B1r/7LnuSnA6IGpRurHWDrYv/\nfXspCQwaOEDeeeedZJeYP/v0U+nUqaMdCf3fJ5+mOCKqy9LUuqGmvf8yvXUQUwqIzkxkvY9wwYsL\nU6pehr87YZbDWbZsmWiZen+oToh5dcnSFNdPzHCh7IgAAgiEoAABMQQ7xctViguxSSpem8WcXt9/\n9NFa6d2rl5x77rl2Ie1gPGkl0BFErauzgHWPHo/Ig+3apVr9xmak8Qcz4ph0FrPeV/mfRvfa41a/\n9XayGcj6gy5D06D+3XafcePHyx133GnfO//4L5SdUkB8++23ZfCggfapLvr4wow8NcUpO7VXZ71K\n/f2pp5+RW2+9NbVd+R4BBBDwpAAB0ZPdFrqVTlgHMXTqFx2TfFZr6NQuczXRNQf1iSY6a1iXuZk+\nY2bmCkhl76wERA1eGsAKFy4sy1estME16WneWr1ahgxJmOGcNCDqU1duqHm9Xbx64MBB0qRp06SH\ny6RJz8iLCxbY7wMJiAcPHpR7G94jOuLZuXMX6dCxY7JzOF+ocUZCt+5Xp/Ztoo9GdJ4445TBKwII\nIBAOAgTEcOjFEGqDPmrvn3UQnfUPc+41ymMBURdl1lmy15r//DcNORPNU0F0nUR9WslLixbJJeYZ\nws6mQWv69Gk2BHU1Eyx0ceiMblkJiHv27JEmje+zC3praB0/4YlEi0l/uGaNCVDD7dNZdAmfpAFR\n69iz5yOyft06O3r4nFlipkKFCr6qr1q1UnSSia6hqI/TCyQgamH6qLxZ5lF8OnrYs1dvad68eaKZ\nyHrpeM7cOZI7V27pah7952xPmEf76fI5Va64wvnKvq5evUqGDtGnBolde1EX5mZDAAEEwkmAgBhO\nvRkCbYndPigEavFPFaJjxv7zwQPvOrR/2Dz67Qvz2LfSNgBeeOGFopdht23basOfBpyBgwZJw4YJ\nl2WdJvkvsN2zZy9p07at81O6r1kJiFq4Tj55dupUOwpYqFAh+/xlHVHcvm2bqfc2adGihZx73nn2\nuc9JH7Wnx+vl2jYP3C86KqeXzqtVqyYXX1zUHqvtHjZ8uDz37LMZehZzSpeY9Rw6etije3f58ssv\n9KP11cklBQsWlF27dsoO8yg93ef+B8yC2L3/WRC7WbOm9jF7Gsb1v3POOUe++fZb+enHH217W7Rs\nKf3MIwnZEEAAgXATICCGW4/mcHs0IOYydXBmLef0a5THAqKOculsWX02sP+mj9e78aabpI95moeG\nx6Sbzm5u1bKFDVlTpz4r19esmXSXVD9nNSBqwToCOGbMaPs8ZudEJUqUkPrmkXa6ZMzEiU/Iy4sX\n29G4lBaz3vzVVzJ06BDzqLx9zuFmRLG4tDP3NTZt1sx3r2Mgk1ScAjWAzjWjhHq5WieY+G8aaDXs\n6TqKGhqdTWdfL126xK496Xynr9oHrVq1kuYm/ObKpX/xbAgggEB4CRAQw6s/c7w1sVsH5Hgd/CsQ\nfdl4/4+eeH/q1Cn77OLDhw7J6djTUrZMWSltHrGXJ0+eNOt/yFyGPmUuNWswy6nt119/ld27dkn5\nCuVtwHPq0atnT1m37iMzY7mzdOzUyfk62avO0v5h924pU7ZMikE42QEBfqHn2b17l3liTQHrVaRI\nkVTvPdTL9z+aEcPffvvNPIovSooXL2HqVirV/QOsEochgAACISVAQAyp7vB+ZWK39hfJbdpx1vyX\n9NVpXtLvnc8u/B4dM8EpldccEtBlau5t2NCMDu6VUeZ+wrvvrp9DNeG0CCCAAAIZFSAgZlSK/TIk\ncGhVW8lfxozGRJvRLv8rb861ZqcUlz+fPXVGju85KIUbzHfOyGsOCehEk2FDh5rRt2hZ9vobQXuG\ndA41h9MigAACESFAQIyIbs6+Rh5ZN0Z+W79G4o6fzr6TpnAmDagl6tWXAtf1TeFXvgqWgF6q/eab\nr6V27TopXgL/5JNPZPDgQaKXv3XijE6gYUMAAQQQCH0BAmLo9xE1RCBkBZwFo4sWLSr6GLty5cuZ\nZW4ukL1798jW77fa+w618vpYOn1ec/78+UO2LVQMAQQQQOAfAQLiPxa8QwCBTArorOMe3bvZSRwp\nHaqzr3XksEOHjkF5gklK5+A7BBBAAIHgCxAQg29KiQhEnICOJH733RY70/fkiZOiC0eXNaOGFStW\nFJ0hzIYAAggg4C0BAqK3+ovaIoAAAggggAACrgsQEF0n5gQIIIAAAggggIC3BAiI3uovaosAAggg\ngAACCLguQEB0nZgTIIAAAggggAAC3hIgIHqrv6gtAggggAACCCDgugAB0XViToAAAggggAACCHhL\ngIDorf6itggggAACCCCAgOsCBETXiTkBAggggAACCCDgLQECorf6i9oigAACCCCAAAKuCxAQXSfm\nBAgggAACCCCAgLcECIje6i9qiwACCCCAAAIIuC5AQHSdmBMggAACCCCAAALeEiAgequ/qC0CCCCA\nAAIIIOC6AAHRdWJOgAACCCCAAAIIeEuAgOit/qK2CCCAAAIIIICA6wIERNeJOQECCCCAAAIIIOAt\nAQKit/qL2iKAAAIIIIAAAq4LEBBdJ+YECCCAAAIIIICAtwQIiN7qL2qLAAIIIIAAAgi4LkBAdJ2Y\nEyCAAAIIIIAAAt4SICB6q7+oLQIIIIAAAggg4LoAAdF1Yk6AAAIIIIAAAgh4S4CA6K3+orYIIIAA\nAggggIDrAgRE14k5AQIIIIAAAggg4C0BAqK3+ovaIoAAAggggAACrgtkW0A8dvSI643hBAgggAAC\nCCCAAAJZFyAgZt2QEhBAAAEEEEAAgbASyLaAGFZqNAYBBBBAAAEEEAhjAQJiGHcuTUMAAQQQQAAB\nBAIRICAGosYxCCCAAAIIIIBAGAsQEMO4c2kaAggggAACCCAQiAABMRA1jkEAAQQQQAABBMJYgIAY\nxp1L0xBAAAEEEEAAgUAECIiBqHEMAggggAACCCAQxgIExDDuXJqGAAIIIIAAAggEIkBADESNYxBA\nAAEEEEAAgTAWICCGcefSNAQQQAABBBBAIBABAmIgahyDAAIIIIAAAgiEsQABMYw7l6YhgAACCCCA\nAAKBCBAQA1HjGAQQQAABBBBAIIwFCIhh3Lk0DQEEEEAAAQQQCESAgBiIGscggAACCCCAAAJhLEBA\nDOPOpWkIIIAAAggggEAgAgTEQNQ4BgEEEEAAAQQQCGMBAmIYdy5NQwABBBBAAAEEAhEgIAaixjEI\nIIAAAggggEAYCxAQw7hzaRoCCCCAAAIIIBCIAAExEDWOQQABBBBAAAEEwliAgBjGnUvTEEAAAQQQ\nQACBQAQIiIGocQwCCCCAAAIIIBDGAgTEMO5cmoYAAggggAACCAQiQEAMRI1jEEAAAQQQQACBMBYg\nIIZx59I0BBBAAAEEEEAgEAECYiBqHIMAAggggAACCISxAAExjDuXpiGAAAIIIIAAAoEIEBADUeOY\nVAXO/LpeYnctkLNHd6S6T9If8lxYVaIuaSN5CldN+hOfEUAAAQQQQCAHBAiIOYAezqc8ua6VxP91\nIKAmRpdtLNGVuwV0LAchgAACCCCAQPAECIjBs6QkI3DivdpZcogqWU/yVnksS2VwMAIIIIAAAghk\nTYCAmDU/jk4ikNWAqMUREpOguvzxkR7dJe7MGenZs5dUrlzZd7azZ8/Kxg0bpGDBgnJ1VS7/+2B4\ngwACCESAAAExAjo5O5sYjIAYXa6e5MpfXOKPficSHxdY9c/ESa4LaklU6aaBHR8iR3399dfyxuuv\ny/fffyeHDx+WUqVKS8WKl8q11atL3bp3BKWW19WoLnFxcTJj5kypXr2Gr8z//ve/0v+xfvbzosUv\nJwqPvp14gwACCCAQlgIExLDs1pxrVFYDYkI4LCHxx004PHsmSw2JN6Nieas8laUycvLguXPmyLPP\nTvVVIVeuXBIfH28/X3311TJn7jzfb1l5k1pAfP/99+Wxfn1t0YtffkViYmJSPM3p06clb968Kf7m\nhS+9Xn8vGFNHBBDwngAB0Xt9FtI1zkpAjC53lxk5dMKhjhzm8murBqPMf46+bIJfGd54qyHwqaee\nlMWLFkm+fPmkXbuHpEaNGvKvyy+X3bt2yRdffCFHjh6RTp06B6VBqQVErcf/Pv5YChYqJFWqVEl2\nrs8/+0xmzZ4l0VHR8uxzzyX7PdS/WLp0qSx59VWpe0ddad++Q6hXl/ohgAAC2SpAQMxW7vA/WSAB\nMXeh8hJV1FzazFdQ4o+ZkUM5a/6/CYS5NRD+HQwD/BwdM85z6AsXvijPPP20FChQQCZNnizVqv3b\n1TakFhDTO+mMGdNl9qxZNrxOnzEzvd1D7vcO7R+2YbtL164ExJDrHSqEAAI5LUBAzOkeCLPzxx14\nPWGgL7UBP+d751Xbf/aUSOxhszzOvoTLyrn1O/Ofvjqb8znpazq/ey0gnjGXxe9pUF9++eUXmTL1\nWalVq5bTQtdeCYgERNf+uCgYAQQ8K0BA9GzXhWbFY7cPDqmKRceMCan6pFeZt1avliFDBsulFSvK\nq68uSW/3oPyenQHx559/lh9+2C0lS5aSMmXKSO7c/v8rIO3mHDlyRPbu3SvFixWTwkWKJNv50KFD\nsn//PvnzzyNSulQpKVW6tERFRSXbz/kiJ0YQ9X5HvU2gQMEC1kDvK026HfnzT9m6bZucby7tV7jk\nEk/f35m0bXxGAAHvCBAQvdNXnqgpATFr3XR/61ZmxvL3MnTYcGnUqFHWCsvg0akFxM2bN8tD7R60\npXz62ee+MFf39jqiYSy1TS836z2Tzqb3Mr700kKZN3eunYntfH/uuedKu4cesvdYJg2Kc154QZ57\n7ll7ef158376tGkyd+4c0RHWihUrySvm3kHd/vrrL1mxfLksXrxIfvzxR6do+1ro/POlT+8+ck/D\nhr7vd+/eLU0a3+f7nNIbp62bNm2U7t26yXn588u6detT2tV+d6e5h/H333+X8RMmJJpZntRv7doP\nZdTIkSbA/mmPW7PmQ9E6Opve7zlhwvhE7ciTJ4/cfvvtMmjwEHvLgbMvrwgggIDbAgREt4UjrPzY\n7UPsVBLnCnLCq5l9a/6f3x2Fzp2Ff7+693tUzGjP9IAuNVPz+utE1x9c+toyqVChgq27jijtMSNn\n5cuXl/wmrAR7y2xAbNqksfzxxx9y4sQJG9B0lK6QGe1yticmTvTdN6n7DBo40ASsj0TDTtVq1ezI\n4Z49e+RLM9lG21rrxhtlypR/ZmtrOf4BsU3bNtK7Vy/RQHnOOedIkSIX+QLismWvyZjRo214LWVG\nDStVipH8BfLLV19+KXoO3caMGSv17rrLvv/pp5/k4Yfa2fc6IqnmWq7+52zvvPueLS+YAXHV6rek\nadMm8tfJk3LxxRfbWwj8A6Lez/n87Nl2lrquRXnZZf+yIfyLLz6X48ePm+WNSsm8efNTHDl16s0r\nAgggEEwBAmIwNSlLNCAmvgkxcVT0TTpJEhHd+j46ZpRnemXfvn3S8J4Gtr7rN2yUFSuWy6uvvGIu\nyf5gg4NejtTQ+Fj//onWK8xqAzMbEJ3zZWSSyhQzyWb+/HlSrFhxmWiCY5UrrnAOF50F3atXTxs0\nn5j4pNSpU8f3mxMQdWkdvWTcokULadW6tQ2Z+/fvt4FJd9aA+O4770r/AQN8gVq/10u5/cwSPevX\nrZPixYvLylWrJenl3PQuMQczIN50082S75x8MsyMDGvIP3DggA2KGpo3mMXIdbFyDdo6ctygQcLf\ngLZDL8n3fKSH7Ny5U5o3b2H7Xr9nQwABBNwWICC6LRxh5cdtH2panPpYoVtBMLVyo2JGeqYHNDB1\n7NhBzjeXHTt06ChPPjlRLrzwQrncLG9z4sRJ2bZtqw1TGnQefbSvtGzVKihtcysg6iXf5s2a2svC\ns8zoWEqzsWfOnCGzzALd/peNtVFOQNT3TZo2lYEDB+nbZNvRo0ftk16S/WC+2Lr1e2n9t9HbJkTq\nyJ3/lp0BUdu3+OWXfZfpnXrExsZKMzOyqCOb3bp1l4ceftj5yffq/F1ER0eLjkQWSeH+S9/OvEEA\nAQSCJEBADBIkxSQIxNqAGDoaXhpB1HvpRowYbkeS9F47vT9P1zp0JlrovWtDhw6RDevXm4kL+eS1\nZcvMRIeSWcZ2KyA6o4f61JeZM2elWM/t27dLyxbNbXDasHGTb0KGf0BcvmKFfYJMigWk8aWOIt5Q\n83o7+vqCWXS8atVqifbOzoA4bPhwuffe5PeUOqOHut7lh2s/8rU/UUXNh1tvuVk0DE+bNl2uu/76\npD/zGQEEEAi6AAEx6KSRXWDs9mGJxg8djdQuNLv9u5dGEBe+aNY/fOZpS3L33fVllLm3Lul2wtyP\n1rDhPXayR9NmzWTAgIFJd8n0Z7cCYp/evWTt2rX20vHtdeumWC8dGR018nH727Jlr0s5c5+lbk5A\nvOCCC+T9D9bY79L6RyfCbDczfzVw6r2He/fusa864Ud/03sc9V5H/y07A+KrS5bKpZde6n96+14n\n7zz91FNS3rS7U+fUFz6fPGmSvSw9aPBgady4SbJy+AIBBBAItgABMdiiEV5ewghi6FxijvbQJea3\n33pLBg9OuJSa1rOPdRFtXUz76qpVZc6cuVn+i3MrIN73n0aJZuSmV1H/Z0E7AVEna7xkniiT2nbq\n1CnReyHffOMN3+xgZ18dedVJKLrldEDUWdA6GzrpphNs9D7KjG7tO3SQLl26ZnR39kMAAQQCFiAg\nBkzHgSkJxJkRxFDavDSCqI/Q01Et3TZ9/L9ULze+9tpSGTtmjGR0dC29/nArIDaof7edZHHNtddK\n5ZjK6VVDmjRpkmwEUe9b1GVuUtrsZfgH28qWLVvsBJSrzPOpa99WWyqZiS2lzRqIJUqUkFtuvsne\nt5nTAdFZOidpO4YPHyYrzSV0XRNSJ7Kkt11vLi8nHQlN7xh+RwABBAIRICAGosYxqQpwD2KqNOn+\n4D+LebUZTdSZvyltb7z+uowaNdKGKb0sm9XNrYDYpXMn+eSTT6RN27bSs2evTFXTGUFMKyAuXbJE\nxo0ba9cSnDd3ni9cOifSJXR02SAdRQwkIH726afmHtCO9v7I/33yabIJJnoevXxd64aaoiOZ6a2D\nmHStRz3++edn2zUe9VnXC15cqF+xIYAAAiEhQEAMiW4In0poQAydC8wiUR5a5kYDjT5mT5dAedLc\nl3abGQ1LaXMuMesCyhOemJjSLpn6zq2A6Fw+1UWzM/us5owERH3ijD55RpeFeXzkqGRt1lnUeplb\nt0ACos4s/k+je+3xq9962wT2Yva9/z+6DI2OlOo2bvx4ueOOO30/J10oO6WA+Pbbb8vgQQPlvPPO\ns/da5s2b13c8bxBAAIGcFCAg5qR+GJ47YR3E0GlYtIcWyla1BfPny+TJk+zSNi8ufCkZpE5Suffe\nhnYRZV37r1mz5sn2yewXgQZEXd9QZypXvuwyWbRocbLTfvTRWrvAtf4wa/bzcs011yTbx/lCw7F/\ngMpIQOzRvZts3LhRbr75FnnGTOJIuukyQYv/vn8xpYCoaw/qLOLWre+XPo8+mvRwu5aiMwtal9lp\nYpbbSbpNmvSMvLhggf06kIB48OBBuddMOjppFtDu3LmLdOjYMekpfJ+TGvl+4A0CCCDgggAB0QXU\nSC4yzi6U/c+qhI6FM4s5uz976UkqaqNLmdxV704bGPQRcYPNI9Z0/Tvnt6FDhtinkui6eosWL7YL\nR+tvuqTL9OnT7HFdzSQG/0e42YPT+CfQgPjee+/KALNot9ZPn/yi9/0l3Tp2aC+ff/65HX0b8fjI\nRI/g0331svqUKZPtKKD/PXgZCYg641tnfmuwfHHhQvv0Eef8OvFjohldjYuLtU9rSSkg6uVpvUyt\nlvNNyNOntCTdevZ8xC62raOHz5klZpyn2+h+q1attE9x0Xsh9TJ2IAFRy3HWgtTRw569epsFsZsn\nWtRb/0fBHPOYwdy5cktX8+g/NgQQQCA7BAiI2aEcQeeI3Z4wCzdUmhwdMzZUqpLhevzvf/+Tvn0f\nFQ0Ghc2iyP82j6c7fTpWNm/+ys7ULVy4sEw2y7boAtrO5oQ1/az3++l9fxndAg2I+qg6ffKLhlp9\nIohOoPjdjIj1MiHHeRazPgGkR/fu5tFyB2zoiTGPkatolnvRULVjx07ZvXuXfT/JjERmNiBquGzR\nvJmdhKJtVY9LTNm6tM3uXbtktHnE3mhzr6Y+7i+lgOgsQK3H6tNNtP7ffrvFPHVllW80U8tq88D9\nNmTq4/iqmb64+OKiZtHybXbhcl3f8Llnn83Qs5j9R0j1nM6mo4dq9OWXX9ivSpUqLfq4vYIFC8qu\nXTuN0w4b/O9/4AHpbZ4tzYYAAghkhwABMTuUI+gcGhAT7kH8Z8wwJz97MSDqn4sGEA03W7duteFE\nv9NlW/Ry6sBBg0RDov+mQaxVyxZ236lTn5Xra9b0/znN94EGRC1UH2Wni3sfPnzYnkODoj41xX9R\nag2Q48ePkw/e/8AE3VOJ6nJpxYrS1oTZevXu8o2G6g4ZGUHU/XR0cuyY0fZxhPpZN108vJO5XKv3\nJt50Y61UA6Luq5NEZs+a5VsOR0cR163f4AuIus/mr76yC5RrIHU2nUDUrl070bUo77yjbpYCopap\nl4/nmlFCvVytXv6b9nWLli3t7QQaGtkQQACB7BAgIGaHcgSdI3brAJHcpsFn/Rqdg5+jLxvvVxHv\nvdVRxG/NMi4FChQwl0Irprr0jbbskBm9O2UuNevyLtm56QzeH3bvtufWZyendKlW66MhSCeO7DdB\nq8hFRaRkiZKZuhSeWpu0XF0ce//+fWbB6QqZbr+OhOqIo65TqItZpzbSp5OHtJ1lypYJ6MkuqdU/\n6fd6Hh1ZzZ+/gG2LPlovtTolPZbPCCCAQLAECIjBkqQcKxC7tb+YW6UkXgPi38EwJz9Hx0ygZxBA\nAAEEEEAgkwIExEyCsXvaAodWtZX8ZcyIR3Qeycn1bs6eOiPH9xyUwg3mp11hfkUAAQQQQACBZAIE\nxGQkfJEVgSPrxshv69dI3PHTWSkmy8dqQC1Rr74UuK5vlsuiAAQQQAABBCJNgIAYaT1OexFAAAEE\nEEAAgXQECIjpAPEzAggggAACCCAQaQIExEjrcdqLAAIIIIAAAgikI0BATAeInxFAAAEEEEAAgUgT\nICBGWo/TXgQQQAABBBBAIB0BAmI6QPyMAAIIIIAAAghEmgABMdJ6nPYigAACCCCAAALpCBAQ0wHi\nZwQQQAABBBBAINIECIiR1uO0FwEEEEAAAQQQSEeAgJgOED8jgAACCCCAAAKRJkBAjLQep70IIIAA\nAggggEA6AgTEdID4GQEEEEAAAQQQiDQBAmKk9TjtRQABBBBAAAEE0hEgIKYDxM8IIIAAAggggECk\nCRAQI63HaS8CCCCAAAIIIJCOAAExHSB+RgABBBBAAAEEIk2AgBhpPU57EUAAAQQQQACBdAQIiOkA\n8TMCCCCAAAIIIBBpAgTESOtx2osAAggggAACCKQjQEBMB4ifEUAAAQQQQACBSBMgIEZaj9NeBBBA\nAAEEEEAgHQECYjpA/IwAAggggAACCESaAAEx0nqc9iKAAAIIIIAAAukIEBDTAeJnBBBAAAEEEEAg\n0gQIiJHW47QXAQQQQAABBBBIR4CAmA4QPyOAAAIIIIAAApEmQECMtB6nvQgggAACCCCAQDoCBMR0\ngPgZAQQQQAABBBCINIFsC4jHjh6JNFvaiwACCCCAAAIIeFKAgOjJbqPSCCCAAAIIIICAewLZFhDd\nawIlI4AAAggggAACCARTgIAYTE3KQgABBBBAAAEEwkCAgBgGnUgTEEAAAQQQQACBYAoQEIOpSVkI\nIIAAAggggEAYCBAQw6ATaQICCCCAAAIIIBBMAQJiMDUpCwEEEEAAAQQQCAMBAmIYdCJNQAABBBBA\nAAEEgilAQAymJmUhgAACCCCAAAJhIEBADINOpAkIIIAAAggggEAwBQiIwdSkLAQQQAABBBBAIAwE\nCIhh0Ik0AQEEEEAAAQQQCKYAATGYmpSFAAIIIIAAAgiEgQABMQw6kSYggAACCCCAAALBFCAgBlOT\nshBAAAEEEEAAgTAQICCGQSfSBAQQQAABBBBAIJgCBMRgalIWAggggAACCCAQBgIExDDoRJqAAAII\nIIAAAggEU4CAGExNykIAAQQQQAABBMJAgIAYBp1IExBAAAEEEEAAgWAKEBCDqUlZCCCAAAIIIIBA\nGAgQEMOgE2kCAggggAACCCAQTAECYjA1KQsBBBBAAAEEEAgDAQJiGHQiTUAAAQQQQAABBIIpQEAM\npiZlIYAAAggggAACYSBAQAyDTqQJCCCAAAIIIIBAMAUIiMHUpCwEEEAAAQQQQCAMBAiIYdCJNAEB\nBBBAAAEEEAimAAExmJqUhQACCCCAAAIIhIEAATEMOjGUmnDm1/USu2uBnD26I8PVynNhVYm6pI3k\nKVw1w8ewIwIIIIAAAgi4J0BAdM82Iks+ua6VxP91IKC2R5dtLNGVuwV0LAchgAACCCCAQPAECIjB\ns6QkI3DivdpZcogqWU/yVnksS2VwMAIIIIAAAghkTYCAmDU/jk4ikNWAqMUREpOg8hEBBBBAAIFs\nFiAgZjN4uJ8uGAExulw9yZW/mMQf/V4kPtaQ5TL/xWfu9Uyc5LqglkSVbuoZ8mXLXpMtW7ZkuL4l\nipeQ9h06ZHh/dkQAAQQQQCCjAgTEjEqxX4YEshoQE8JhCYk//p3I2TMZOmdqO8WfOWMuVz+V2s8h\n9/3AAQPk3XffyXC9rrjiSpm/YEGG92dHBBBAAAEEMipAQMyoFPtlSCArATG63F1m5DA44dCpbPRl\nE5y3If/68aZNsmfPnjTrGRsXK1MmT5bY2FgZPXqM3HX33Wnuz48IIIAAAggEIkBADESNY1IVCCQg\n5i5UXqKK1hDJV1Dij5nLyqIjh84lZedUgX2OjhnnFBAWry8vXiwTJz4hl19+uSx4caHkyqWX39kQ\nQAABBBAIrgABMbieEV9a3IHXM3/LYPwpkdjDZnmcfQmXlXMbxrPmvyC8hlNAPHH8uNxzTwP5448/\n5Lnnpsn1NWtG/N8bAAgggAAC7ggQEN1xjdhSY7cPDqm2R8eMCan6ZKUyz8+eLdOnT5Nq1f4tz7/w\nQlaKytCxu3btkkMHD0pM5cpSqFChDB1z6NAh2b9/n/z55xEpXaqUlCpdWqKiojJ0rLOTBuFvzWSd\niy++WMqVKye5c+v/UsjY9vPPP8sPP+yWkiVLSZkyZTJ17JEjR2Tv3r1SvFgxKVykSMZOyF4IIIBA\nmAoQEMO0Y3OqWQREd+SPHTsm9e++S/R1xsyZUr26uSQfpO26GtUlLi7Olnv11VVl3Nixsn79OtGw\n52wxMTH2nsdLK1Z0vvK9/vXXX7Ji+XJZvHiR/Pjjj77v9U2h88+XPr37yD0NGyb6Xj/MMSH3ueee\n9QXeDRs2yMwZ0+X777+Xs2d1CFnknHPOkVatW0uXLl1TDXvx8fHy0ksLZd7cuXL48GF7nP5z7rnn\nSruHHpJ27R5KdmzSc0+fNk3mzp0jZ8zEpooVK8krr77qK4c3CCCAQCQKEBAjsdddbHPc9iGm9ACW\npfHdc+jcaxic16iYUS62NvuKdgJNlSpV7L2HwTyzExCnTJlqQt5i+eyzT+09jhUuuUT27d0n33zz\ntWgI1LD25FNPSc2aNyQ6vS7PM2b0aBvCSplRw0qVYiR/gfzy1Zdf+ibdjBkzVurddVei45w26Yho\n+/btpXfvXlK4cGHRNubNl0+2fPut/PTTT/YYvZw+deqzyYLeiRMnZNDAgbJu3UeSJ08eqVqtmh05\n1Mk+X37xhQ2atW68UbRt/pv/udu0bSO9e/WygVLbWKTIRQREfyzeI4BARAoQECOy291rdGyIBcTo\nMAiIp06dkgb177Yjek9MfFLq1KkT1A50AqKGu+joaJnwxBN2FM05iYa0vo/2kZ07d0rZsmVl6WvL\nbBhzfteA+O4770p/s0xPhQoVnK/l9OnT0q9fX1m/bp0UL15cVq5anWhSjRPS9HLuSRP0Wre+Xzp1\n7uwLgToyOHfOHJk27TnR948/PlIa3HOPr3x9ozO658+fJ8WKFTeTdyZKlSuu8P3++WefSa9ePUVD\nZFI359w6MqqXw1u0aGFHKjVk7t+/X9SCDQEEEIhkAQJiJPe+C22P2z7UlJrLjAfG23HEhFPk3Odw\nGEFcunSpuew7xoSW0vLGm2/6AlSwus8JiHnz5pUlS1+T0ua+waSbhsMWzZvZEbkRIx5PdMn46NGj\nUrBgwaSH2M9bt34vrVu1su/fNiFS7yt03wcewwAAIQZJREFUNiek6edGjRrJ0GHDnZ8SvQ7o31/e\ne+9dG9reeHO5r/16Obt5s6b2svAsc3+mjkQm3WbOnCGzzCX5pJeN/c/dpGlTGThwUNJD+YwAAghE\ntAABMaK7P/iNj7UBMfjlBlpiOIwgNm/WTHbs+D/p0eMRebBdu0ApUj3OCYiNGzeRQYNTn2TUs+cj\ndjSwYcN7ZfiIEamW5/+DjiLeUPN6OwL4ghkNrFq1mu9n/5D27nv/NZd2U54Y8t1338kD97e2x61a\n/ZYdjdQPzujhtdWry8yZs3zl+r/Zvn27tGzR3IbKDRs3iYZg3fzPvXzFChu+/Y/jPQIIIBDpAgTE\nSP8LCHL747YPC3KJWSsuKmZk1grI4aM3b94sD7V70M4Efuutt12ZXesExKFDh0mj//wn1RZPnTJF\n5s2bK9dcc43Mmv18sv30MvD2bdtEQ5neA7h37x77qpNO9De9D1DvB3Q2J6QVLVpU3no79SfI6CV2\nDZm6zZo1W6659lr7vo+5Z3Ht2rX2kvvtdeva75L+c+LESRk18nH79bJlr0u58uXte+fcF1xwgbz/\nwZqkh/EZAQQQiHgBAmLE/wkEF4ARxOB6Dh82VFauXCm33367uTdwYnAL/7s0JyBOmzZdrrs+IYil\ndKKXX35ZJj4xwY626aibs2mAm2FmH7/5xhvmfr4/na/tqy5xozOkdUstIF599dUyZ+48u09q/9x2\n261yxJQ9ctQoqV+/gd3tvv80SjZrOrXj9Xv/2d9OQLzssn/JS4sWpXUYvyGAAAIRKUBAjMhud6/R\nsWYEMZcpPuEeRL330JnTrPckZv9nL48g6uXZOrVvs5MsNBxqSHRjcwKif4BK6Ty6BqOuxXjVVVfJ\n3Hnz7S66LEy7B9vKFrNuoT7V5SoT9mrfVlsqmckfei9jiRIl5Jabb7JtSC0gpreuowbMmtdfZ+9/\n9F8gXCfu6LqHOqJYOaZySlVO9F2TJk2SjSCmd+5EBfABAQQQiCABAmIEdXZ2NJURxOApf/jhh/Jo\nn97mvrl85jLoB3LeeecFr3C/kpyA+PQzk+SWW27x+yXx2+HDh8lKM3J49931ZZRZ1ka3pUuWyLhx\nY+16h/PMKKBzCdc5Utcz1HCnIS+1gFj5sstk0aLFziHJXnVW8T0N6tvv31y+wjeJpkvnTvLJJ59I\nm7ZtpWfPXsmOS+sLZwSRgJiWEr8hgEAkCxAQI7n3XWh7XCqTVJyRxNRO6dbvXp7FPGzoEFm1apXc\ndNPNMsks5+LW5gTEbt26y0MPP5ziaTTgNTSP+fvll1+kc+cu0qFjR7vfkCGD5a3Vq6VBgwby+Mjk\na07qTGO9FKxbagExn1nzcP2Gjb7ZyXZnv3+cEKpL8Oh+zpNZdO1FXWKnRo0aMn3GTL8j0n9LQEzf\niD0QQCCyBQiIkd3/QW99wjqIQS824AKjYxJGugIuIIcO1EkdtfW+O/P4t4GDBoteHnVrcwKirlWo\ny9ykNFK5fPmb8riZuayzgHWpmWLmcXS69ejeTTZu3Cg333yLPDNpUrIqPvnkRFn89z1+qQVEPajf\nY/3tWoRJC9BL2Bow9RF4Tc1s7gEDBvp2+eijtXaBa/1CJ83o5JnUNh3J9H9kHwExNSm+RwABBBIE\nCIj8JQRVQB+1l3CvYWr3HDrfO69J71F0vndes/Z7lEcD4u7du6VJ4/ts37y48CX7ZJO0OkrvV9R7\nBE+ePCldzWPp9BF3Gd2cgKj76yzjkWYkUGf3OtuaNR/IELP8jT5NpVWr1vJo377OT/LMM0/Lwhdf\ntOHrxYULRSd9OJuO7k00907GxcXa+wfTCogaSocNHy51697hHC7HzTOZ+z/2mGzatFF0lHH5ipVy\n0UUX+X7XNx07tJfPP//cBtYRZiFtHU303/bt22dGLifbEU4diXU2AqIjwSsCCCCQsgABMWUXvg1Q\nIHZ7aC04HB0zNsCW5Oxh+mzjESOG28up69Zv8K3fl1qtdCFpXVBaN70fT+/Ly+jmBMTu3XvYZWx0\npE2fyXzBhReIrkG4yyySrSOa+vznJ8zTSgoVKuQrWgOYLqCtTyvR7fLLL5dLLr3UPk95965dMto8\nYm/0qJFpTlLRSS+lzIQWvVSt9yPqhJPff//NPOLvG9FFuDUcDjeLc995552+8zpvdAHvHt27m0vf\nB+wkmZjKlaWiOb+OPO7YsVN2795l3+slegKio8YrAgggkL4AATF9I/bIhIAGxIRZzM7IX86+Rnk0\nIOrED733rrIJPIsWv5xuD2hQatWyhR2p02cW67OLM7o5AVFnMefPX0B0aZ1dJtw5mwbC+xo3Fr1H\n0f8yrfO7juCNHTNafvjhB+crKVmypHlsXpeEkbsba6UZEHWiiD4JZaJ5xN/KVSvlhBk51E3Ppe0f\nNnyE6CPxUts0RI4fP04+eP8D83i/U4l2u7RiRWlrwnK9enclejwgI4iJmPiAAAIIJBMgICYj4Yus\nCMRuHZCVw4N+bPRl44NeZqgWeOjgQTllLjXr0jKZ2fwDoo4S6nb48GG76HXpMmXsI+7SK0/v8dPF\nsffv3yfly1fIUB1SCmlazjaz2PZps7aijgaee+656Z3a97seq5Ni9ptRzSIXFZGSJUpm6lK7ryDe\nIIAAAggIAZE/gqAKxG41lzlzmyLP+hWbg5+jL5vgVxHepiSQUkBMab9gf5dSQAz2OSgPAQQQQCAw\nAQJiYG4clYrAoVVtJX+ZIpI7Ok/CtWVnv6Tr2Lj8+eypM3J8z0Ep3CBhQWenGrwmFyAgJjfhGwQQ\nQCDSBQiIkf4XEOT2H1k3Rn5bv0bijp8OcsmZK04Daol69aXAdf/MuM1cCZGzNwExcvqaliKAAAIZ\nFSAgZlSK/RAIUwECYph2LM1CAAEEsiBAQMwCHociEA4CBMRw6EXagAACCARXgIAYXE9KQ8BzAi8v\nXixn489KnTp1zILTxbOt/lu2bJHNm7+SohcXldvr1s2283IiBBBAAIH0BQiI6RuxBwIIIIAAAggg\nEFECBMSI6m4aiwACCCCAAAIIpC9AQEzfiD0QQAABBBBAAIGIEiAgRlR301gEEEAAAQQQQCB9AQJi\n+kbsgQACCCCAAAIIRJQAATGiupvGIoAAAggggAAC6QsQENM3Yg8EEEAAAQQQQCCiBAiIEdXdNBYB\nBBBAAAEEEEhfgICYvhF7IIAAAggggAACESVAQIyo7qaxCCCAAAIIIIBA+gIExPSN2AMBBBBAAAEE\nEIgoAQJiRHU3jUUAAQQQQAABBNIXICCmb8QeCCCAAAIIIIBARAkQECOqu2ksAggggAACCCCQvgAB\nMX0j9kAAAQQQQAABBCJKgIAYUd1NYxFAAAEEEEAAgfQFCIjpG7EHAggggAACCCAQUQIExIjqbhqL\nAAIIIIAAAgikL0BATN+IPRBAAAEEEEAAgYgSICBGVHfTWAQQQAABBBBAIH0BAmL6RuyBAAIIIIAA\nAghElAABMaK6m8YigAACCCCAAALpCxAQ0zdiDwQQQAABBBBAIKIECIgR1d00FgEEEEAAAQQQSF+A\ngJi+EXsggAACCCCAAAIRJZBtAfHY0SMRBUtjEUAAAQQQQAABrwoQEL3ac9QbAQQQQAABBBBwSSDb\nAqJL9adYBBBAAAEEEEAAgSALEBCDDEpxCCCAAAIIIICA1wUIiF7vQeqPAAIIIIAAAggEWYCAGGRQ\nikMAAQQQQAABBLwuQED0eg9SfwQQQAABBBBAIMgCBMQgg1IcAggggAACCCDgdQECotd7kPojgAAC\nCCCAAAJBFiAgBhmU4hBAAAEEEEAAAa8LEBC93oPUHwEEEEAAAQQQCLIAATHIoBSHAAIIIIAAAgh4\nXYCA6PUepP4IIIAAAggggECQBQiIQQalOAQQQAABBBBAwOsCBESv9yD1RwABBBBAAAEEgixAQAwy\nKMUhgAACCCCAAAJeFyAger0HqT8CCCCAAAIIIBBkAQJikEEpDgEEEEAAAQQQ8LoAAdHrPUj9EUAA\nAQQQQACBIAsQEIMMSnEIIIAAAggggIDXBQiIXu9B6o8AAggggAACCARZgIAYZFCKQwABBBBAAAEE\nvC5AQPR6D1J/BBBAAAEEEEAgyAIExCCDUhwCCCCAAAIIIOB1AQKi13uQ+iOAAAIIIIAAAkEWICAG\nGZTiEEAAAQQQQAABrwsQEL3eg9QfAQQQQAABBBAIsgABMcigFIcAAggggAACCHhdgIDo9R6k/ggg\ngAACCCCAQJAFCIhBBqU4BBBAAAEEEEDA6wIERK/3YIjV/8yv6yV21wI5e3RHhmuW58KqEnVJG8lT\nuGqGj2FHBBBAAAEEEHBPgIDonm1ElnxyXSuJ/+tAQG2PLttYoit3C+hYDkIAAQQQQACB4AkQEINn\nSUlG4MR7tbPkEFWynuSt8liWyuBgBBBAAAEEEMiaAAExa34cnUQgqwFRiyMkJkENsY+P9OgucWfO\nSM+evaRy5cq+2p09e1Y2btggBQsWlKurBna7wFNPPik7d+2URo0ayR133OkrmzcIIIAAAtkrQEDM\nXu+wP1swAmJ0uXqSK38xiT/6vUh8rDHLZf6Lz9zrmTjJdUEtiSrd1JPmhw8flgUL5suWLVtk7549\nUqxYMYmJiZFWre+XcuXK5WibrqtRXeLi4mTGzJlSvXoNX13++9//Sv/H+tnPixa/nCg8+nZK581D\n7R6UzZs3S49HHpEHH2yXzt78jAACCCDglgAB0S3ZCC03qwExIRyWkPjj34mcPZMlxXgzypW3ylNZ\nKiMnDv7www9lxPBhcvToUXv63Llzi47O6RYdHS3de/SQ++9/wH7OiX9SC4jvv/++PNavr63S4pdf\nsYE2s/UjIGZWjP0RQAABdwQIiO64RmypWQmI0eXuMiOHwQmHTgdEXzbBeeuJ171790rLli3kxPHj\ncs2118qjj/aVihUryoEDP8vs2bNlxfLlkitXLnlu2nS57rrrcqRNqQXE+Ph4+d/HH0vBQoWkSpUq\nAdWNgBgQGwchgAACQRcgIAadNLILDCQg5i5UXqKKmkuV+QpK/DFzWVl05NC5pOx4BvY5OmacU4An\nXseNHSNLly6VsmXLyiuvLpG8efMmqvejfXqLjjBeffXVMmfuvES/ZdeH1AJiMM5PQAyGImUggAAC\nWRcgIGbdkBL8BOIOvJ75WwbjT4nEHjbL4+xLuKyc2xSoV1SD8Oq1gNi6VSvZuvV76dSps3Ts1MlP\nNuHtBjMJRCeJ5MuXT9at3yB58uRJto/bXxAQ3RamfAQQQCDnBQiIOd8HYVWD2O2DQ6o90TFjQqo+\n6VWmzQP324kpj/XvL82bt0i2u05a0X3y588vH6z5UKKiopLtE+gXJ0+elJ9++kl+//13KVOmjP1P\nL2cn3YIREPVc27dtkyhzT6XOhHbakZkRxJ9//ll++GG3lCxZytZV79VMb/vjjz9kj5n0c/zYMalY\nqZJcdNFF6R3C7wgggEBEChAQI7Lb3Ws0ATFrts8/P1umT5tml3gZN358ssIWvviiPPPM01K37h0y\nfkJw7q88dOiQzJw5w97feOqUGc39ezvPhNDat90mj48c5XxlX1MLiDr7WAOebp9+9rmkFNi2b98u\nIx8fIdtMOHQm3uhoaO06dWT48BHSqWOHNGcx632OL720UObNnSs609vZzj33XGn30EPSrt1DKZ53\n29atMn36dFm/fp1oGc5WpEgRebh9+xTDuLMPrwgggEAkChAQI7HXXWxz3PYhpvQAlqXx3XPo3GsY\nnNeomMThxsWmB6XoH3/80cxQbi0nT5yQ8eMnyO116/rK1VDVof3DoqNvk6dMlRtuuMH3W6Bvjvz5\np7Tv0F527tghBQoUMGXWsq/7f94v35nRyuLFi4vOSPbfAg2Ib61eLaNGjRQNoYXOP1+uMBNZLr64\nqGzfvk2+//57uemmm+W3336zl9hTWubmhDEZNHCgrFv3kb20XrVaNTtyqCOCX37xhQ2ctW68UaYY\nG//tu+++k86dOspxM/GnVKnS8u9r/m1/3rtnr3zzzdfStFkz6ds3YXke/+N4jwACCESyAAExknvf\nhbbHhlhAjPZYQNQu0dGu7uY+w0MHD0rNmjfIvy7/l1kLca988MH7dnRszNixUrt2naD0njNiqZeU\n5y94Uc43wc3ZNIjqrORbzSii/xZIQPzllwPS6N5Gcvr0KbntttoyctQoOe+883zFfrhmjQwdNtTO\n3tYve/Qw6yC2S7wO4pTJk2X+/HlmTcjiMnHiRKlyxRW+4z//7DPp1aunaIh8YuKTUseMSDpbl86d\n5JNPPpHbb79dxpnQ7T+y+euvv9pLztdcc42zO68IIIAAAkaAgMifQVAF4rYP1T8rMx4Yb8cREwrP\nuc9eG0FUrzNm/UYNQwsXvpjA5/dvrVq1bMjRexCDsXXt2sWGQF1XsXefPhkqMpCAOGLEcHsJWxf7\n1kW0U7q3cdmy12TM6NG2DkkDoo6sNm/W1NrMMsv9VKuWMAroX2G9TD7LLN5dsWIlMwP8VfuTXsau\nZUZaNZg+M2mS3HzzLf6H8B4BBBBAIBUBAmIqMHwdmECsDYiBHevGUV4bQdRLvp3NiJdeTr7ggguk\n3l13SYXyFUQnZKz5cI38+MMPovfNzZg5Sy655JIsk+mTT/QJKLpuoS6b40wWSavgzAZEHYm8+aYb\n7SXgCU9MtCN5KZWvYe7GWjfYS9BJA6Izenht9ermfslZKR1uLlVvl5YtmtsRwg0bN/mWCKpT+zbR\nySmtWrWWR/smLOSdYgF8iQACCCDgEyAg+ih4EwyBuO3DglFM0MqIihkZtLKyo6CHzUSLr7760l4+\nnTRpshQuXNh32tOnT8tocw/fqlWr7GXWV5cssfcL+nYI4I2uqahrK+p21VVXSZeu3czj86qnOMLn\nFJ/ZgPh///d/0qJ5M3v4GjPzWu8/TG1r1aqlvcSeNCD26d1L1q5day8d+9+X6V/OiRMnZdTIx+1X\ny5a9LuXKl7fv9fnOixa9ZN/Xr1/fTGZ5WCpUqGA/8w8CCCCAQMoCBMSUXfg2QAFGEAOEM4fp5Ite\nPXvaCRhLlr6W4jOXdTSu8X33id7T1717DztzN/AzJhyps4KnTpkisbH63Guxwapli5bS8N577XqL\nCXv9829mA6LeO9nPjNzprOh169b/U1AK71Jb5ua+/zQSvcyc0c3/OdE6KWbM6FE2WDvH60hk69at\nueTsgPCKAAIIJBEgICYB4WPWBGLNCGIuU0TCPYh676Ezp1nvScz+z14aQdQZvm+8/nqie+hS6g29\nT0/v17viiivNxJIFKe2S6e/0EX96z+PKFSvsLGktoFy5cvZ+R12n0H/LbEB07i3UNQffefc9/6KS\nvW/bpo18++03knQWc4P6d9vL7Pr4wcoxieuTrBDzRZMmTXwjiM7vX375hSyYv8AudeMssaMzwUeP\nGZtoco6zP68IIIBAJAsQECO5911oOyOIgaN269ZVPt60SXQiypSpz6ZakE7E0AkZGQlcqRaSyg/6\nDOhly5aJzm4+evSouZRdTF5dsjTRpezMBsRNmzZK927d7GXrjZs+9t0bmFIV7ryjrl2oO+klZmcm\ncpu2baVnz14pHZrh7w4cOCDz580zjzRcYu+L1IkrOoGFDQEEEEDgHwEC4j8WvAuCQMIs5uQFOSOJ\nyX9J+Mat3700i/kJs/D1K6+8LKVLl5Y3l69IjcqsBThA3nnnHdGlWWbNfj7V/bLyg65LeH/rVraI\np55+Rm699VZfcZkNiLpOYaN7G9rjdSKMPkc6pU2f4KIBUbekAdEZNa1Ro4ZMnzEzpcMz/Z2z6Lge\n+OHaj6RgwYKZLoMDEEAAgXAVICCGa8/mULsS1kHMoZOncNromIRlU1L4KeS+WrlypQw3awHqpiFI\nw1DSbf/+/dKsaRN7GTgzS9MkLSe9z3oJVmf/HjlyREaMeFzuaZgQ8PS4zAZELevehveI1j2t0VHn\nErueI2lA/OijtdK7V8LIoYbitNYt1PP5r3Wo5aW06UzxVi0THme4YuUq88i+kintxncIIIBARAoQ\nECOy291rtD5qL+Few9TuOXS+d16T3qPofO+8Zu33KA8FRJ2l/MD998uOHf8nRYsWtYtJV6/+T0jU\n74cOGWKXc9GZwC+bJ5zoJWDd9Njp06fZ4Ni1S9c0Zwr7976OWurMXv9Fp/X31atX2XPpex3N1FFN\nZ8tsQNTjVq1aKcOGJoRfDbY9TdhzQpwGujkvvCAvvPC8nGMemadL/SQNiFpGR/PEl88//9y2ecTj\nI5MF6H379pmnqEyWBg0a2Key6DEacCdPniQdO3byWen3uumM5zfeeMN+v/qttxO+5F8EEEAAAStA\nQOQPIagCsdsHBbW8rBYWHTM2q0Vk6/G7du2yj9PTdft00yeclC1bVvS+ud27d9t75vLmzWsnj/hf\n9n3vvXdlQP/+9hi9R0/v1cvI1swsPq2P2dM1FfW/c845R7759lv5ycwY1mcWt2jZUvr1eyxRUYEE\nRA2Bvc1SNevXrbNl6SP8rrjySsmTO7eZlPKtbd/YceNlkZlRrc90TjpJRQ/auXOn9Oje3c7g1oW2\nY8zkmYqXXmoXz96xY6fx2WXfTzKLjOtj+3T704TN2rfdau97rFSpkl3eRpfD+frrzfZeRw2p48x5\nU1s6xxbCPwgggEAEChAQI7DT3WyyBsSEWczOyF/OvkZ5LCBq3+io14zp0+XNN9+Qv/76y9dduoj1\njeZZw30efdQ+U9j3g3mj4Ukvl2oQm2omuFxfs6b/z6m+1+VtdLLGsWPHEu2jzyxu1aqVNG/RItma\niIEERC1cA6eOEuoEEX0knm4a0CpWrCgPP9zehrTUlrmxO5t/dOLM+PHj5IP3P7BPR3G+19dLTTlt\nTTCuV+8uu1SQfqd+Gpw3btxgw6N+52xXV60q7dt3CMozrZ0yeUUAAQTCRYCAGC49GSLtiN06IERq\nklCN6MvGh1R9MlMZDXs//7zfPof5YnPJWUcS03rSiT67+ZS51FyiRInMnMZentY1Bn/77TeJjo6S\n4sVLmABayncJOFOFZWBnbddPP/1kRgJ/kcsvvzygySFahtZ5v7msXOSiIlKyRMk0L6tr6NalfA4e\n/F0KFTrf3m948cUXZ6C27IIAAghEpgABMTL73bVWx241lzlzm+LP+p0iBz9HXzbBryK8RQABBBBA\nAIGMCBAQM6LEPhkWOLSqreQvU0RyR+dJuLbsHJl0HRuXP589dUaO7zkohRvMd2rAKwIIIIAAAghk\nUICAmEEodsuYwJF1Y+S39Wsk7vjpjB3g0l4aUEvUqy8Fruvr0hkoFgEEEEAAgfAVICCGb9/SMgQQ\nQAABBBBAICABAmJAbByEAAIIIIAAAgiErwABMXz7lpYhgAACCCCAAAIBCRAQA2LjIAQQQAABBBBA\nIHwFCIjh27e0DAEEEEAAAQQQCEiAgBgQGwchgAACCCCAAALhK0BADN++pWUIIIAAAggggEBAAgTE\ngNg4CAEEEEAAAQQQCF8BAmL49i0tQwABBBBAAAEEAhIgIAbExkEIIIAAAggggED4ChAQw7dvaRkC\nCCCAAAIIIBCQAAExIDYOQgABBBBAAAEEwleAgBi+fUvLEEAAAQQQQACBgAQIiAGxcRACCCCAAAII\nIBC+AgTE8O1bWoYAAggggAACCAQkQEAMiI2DEEAAAQQQQACB8BUgIIZv39IyBBBAAAEEEEAgIAEC\nYkBsHIQAAggggAACCISvAAExfPuWliGAAAIIIIAAAgEJEBADYuMgBBBAAAEEEEAgfAUIiOHbt7QM\nAQQQQAABBBAISICAGBAbByGAAAIIIIAAAuErQEAM376lZQgggAACCCCAQEACBMSA2DgIAQQQQAAB\nBBAIXwECYvj2LS1DAAEEEEAAAQQCEiAgBsTGQQgggAACCCCAQPgKEBDDt29pGQIIIIAAAgggEJAA\nATEgNg5CAAEEEEAAAQTCVyDbAuKxo0fCV5GWIYAAAggggAACYSRAQAyjzqQpCCCAAAIIIIBAMASy\nLSAGo7KUgQACCCCAAAIIIOC+AAHRfWPOgAACCCCAAAIIeEqAgOip7qKyCCCAAAIIIICA+wIERPeN\nOQMCCCCAAAIIIOApAQKip7qLyiKAAAIIIIAAAu4LEBDdN+YMCCCAAAIIIICApwQIiJ7qLiqLAAII\nIIAAAgi4L0BAdN+YMyCAAAIIIIAAAp4SICB6qruoLAIIIIAAAggg4L4AAdF9Y86AAAIIIIAAAgh4\nSoCA6KnuorIIIIAAAggggID7AgRE9405AwIIIIAAAggg4CkBAqKnuovKIoAAAggggAAC7gsQEN03\n5gwIIIAAAggggICnBAiInuouKosAAggggAACCLgvQEB035gzIIAAAggggAACnhIgIHqqu6gsAggg\ngAACCCDgvgAB0X1jzoAAAggggAACCHhKgIDoqe6isggggAACCCCAgPsCBET3jTkDAggggAACCCDg\nKQECoqe6i8oigAACCCCAAALuCxAQ3TfmDAgggAACCCCAgKcECIie6i4qiwACCCCAAAIIuC9AQHTf\nmDMggAACCCCAAAKeEiAgeqq7qCwCCCCAAAIIIOC+AAHRfWPOgAACCCCAAAIIeEqAgOip7qKyCCCA\nAAIIIICA+wIERPeNOQMCCCCAAAIIIOApAQKip7qLyiKAAAIIIIAAAu4LEBDdN+YMCCCAAAIIIICA\npwQIiJ7qLiqLAAIIIIAAAgi4L0BAdN+YMyCAAAIIIIAAAp4SICB6qruoLAIIIIAAAggg4L4AAdF9\nY86AAAIIIIAAAgh4SoCA6KnuorIIIIAAAggggID7AgRE9405AwIIIIAAAggg4CkBAqKnuovKIoAA\nAggggAAC7gsQEN035gwIIIAAAggggICnBAiInuouKosAAggggAACCLgvQEB035gzIIAAAggggAAC\nnhIgIHqqu6gsAggggAACCCDgvgAB0X1jzoAAAggggAACCHhKgIDoqe6isggggAACCCCAgPsCBET3\njTkDAggggAACCCDgKQECoqe6i8oigAACCCCAAALuCxAQ3TfmDAgggAACCCCAgKcECIie6i4qiwAC\nCCCAAAIIuC9AQHTfmDMggAACCCCAAAKeEiAgeqq7qCwCCCCAAAIIIOC+AAHRfWPOgAACCCCAAAII\neEqAgOip7qKyCCCAAAIIIICA+wIERPeNOQMCCCCAAAIIIOApAQKip7qLyiKAAAIIIIAAAu4LEBDd\nN+YMCCCAAAIIIICApwQIiJ7qLiqLAAIIIIAAAgi4L0BAdN+YMyCAAAIIIIAAAp4S+H/9s02s6aWy\nmgAAAABJRU5ErkJggg==\n"
},
"img/fig2-scripts.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAwYAAAJSCAYAAAB5rtKBAAAMaWlDQ1BJQ0MgUHJvZmlsZQAASImV\nVwdYU8kWnltSSWiBCEgJvQkivUgJoUUQkCrYCEkgocSYEFTsqKjg2kUUK7oqouhaAFlUxF4Wxd4X\nCwrKuqiLoqi8CQnouq9873zf3PnvmTP/KXfm3jsAaPXwpNIcVBuAXEmeLC48mDU2JZVFeg6IAAFk\nwAImPL5cyo6NjQJQBvq/y/tb0BbKdScl1z/H/6voCoRyPgDIeIjTBXJ+LsSNAOAb+VJZHgBEpd5y\nap5UiedCrCeDAUK8RokzVXi3EqercEO/TUIcB+KrAJBpPJ4sEwDNB1DPyudnQh7NzxC7SARiCQBa\nwyAO4It4AoiVsQ/LzZ2sxGUQ20F7KcQwHuCd/h1n5t/40wf5ebzMQazKq1/IIWK5NIc3/f8szf+W\n3BzFgA8b2GgiWUScMn9YwzvZkyOVmAZxpyQ9OkZZa4h7xAJV3QFAqSJFRKLKHjXmyzmwfoAJsYuA\nFxIJsTHEYZKc6Ci1Pj1DHMaFGK4WdJo4j5sAsQHEi4Xy0Hi1zVbZ5Di1L7QmQ8Zhq/XnebJ+v0pf\njxTZiWw1/1uRkKvmxzQLRAnJEFMhtsoXJ0VDrAmxszw7PlJtM7JAxIkesJEp4pTxW0EcJ5SEB6v4\nsfwMWVic2r44Vz6QL7ZVJOZGq/HBPFFChKo+2Gk+rz9+mAt2VShhJw7wCOVjowZyEQhDQlW5Y+1C\nSWK8mqdHmhccp5qLU6U5sWp73EKYE67UW0DsLs+PV8/Fk/Lg4lTx4xnSvNgEVZx4QRZvVKwqHnwF\niAIcEAJ3nwK2dDAZZAFxc2dtJ7xTjYQBHpCBTCAETmrNwIzk/hEJvMaDAvAHREIgH5wX3D8qBPlQ\n/2VQq7o6gYz+0fz+GdngOcS5IBLkwHtF/yzJoLck8AxqxP/wzoOND+PNgU05/u/1A9pvGjbURKk1\nigGPLK0BS2IoMYQYQQwj2uNGeADuh0fBaxBsrrg37jOQxzd7wnNCC+EJ4SahlXB3krhQ9kOUo0Er\n5A9T1yL9+1rgNpDTAw/G/SE7ZMaZuBFwwt2hHzYeCD17QC1HHbeyKqwfuP+WwXdPQ21HcaGglCGU\nIIrdjzM1HTQ9BlmUtf6+PqpY0wfrzRkc+dE/57vqC2Af+aMlthg7hJ3DTmIXsAasFrCwE1gddhk7\npsSDq+tZ/+oa8BbXH0825BH/w9/Ak1VWUu5S5dLh8lk1lieclqfceJzJ0ukycaYoj8WGXwchiyvh\nOw9jubq4ugKg/NaoXl/vmP3fEIR58Zuu8CEA/il9fX0N33RRcP8ebofbv/ObzrYKAPpxAM4v5Ctk\n+SodrrwQ4FtCC+40Q2AKLIEdzMcVeAI/EARCwSgQAxJACpgIoxfBdS4DU8FMMA8UgRKwAqwFG8AW\nsB3sBvvAQVALGsBJcBZcAlfBTXAfrp428Ap0gfegF0EQEkJHGIghYoZYI46IK+KNBCChSBQSh6Qg\naUgmIkEUyExkPlKCrEI2INuQSuQX5ChyErmAtCB3kcdIB/IW+YRiKA3VQ01QG3Q46o2y0Ug0AZ2A\nZqJT0AJ0AboMLUMr0L1oDXoSvYTeRFvRV2g3BjANjImZY06YN8bBYrBULAOTYbOxYqwUq8CqsXr4\nnK9jrVgn9hEn4gychTvBFRyBJ+J8fAo+G1+Kb8B34zX4afw6/hjvwr8S6ARjgiPBl8AljCVkEqYS\nigilhJ2EI4QzcC+1Ed4TiUQm0ZboBfdiCjGLOIO4lLiJuJ/YSGwhPiV2k0gkQ5IjyZ8UQ+KR8khF\npPWkvaQTpGukNlIPWYNsRnYlh5FTyRJyIbmUvId8nHyN/ILcS9GmWFN8KTEUAWU6ZTllB6WecoXS\nRuml6lBtqf7UBGoWdR61jFpNPUN9QH2noaFhoeGjMUZDrDFXo0zjgMZ5jccaH2m6NAcahzaepqAt\no+2iNdLu0t7R6XQbehA9lZ5HX0avpJ+iP6L3aDI0nTW5mgLNOZrlmjWa1zRfa1G0rLXYWhO1CrRK\ntQ5pXdHq1KZo22hztHnas7XLtY9q39bu1mHojNCJ0cnVWaqzR+eCTrsuSddGN1RXoLtAd7vuKd2n\nDIxhyeAw+Iz5jB2MM4w2PaKerR5XL0uvRG+fXrNel76uvrt+kv40/XL9Y/qtTIxpw+Qyc5jLmQeZ\nt5ifhpgMYQ8RDlkypHrItSEfDIYaBBkIDYoN9hvcNPhkyDIMNcw2XGlYa/jQCDdyMBpjNNVos9EZ\no86hekP9hvKHFg89OPSeMWrsYBxnPMN4u/Fl424TU5NwE6nJepNTJp2mTNMg0yzTNabHTTvMGGYB\nZmKzNWYnzF6y9FlsVg6rjHWa1WVubB5hrjDfZt5s3mtha5FoUWix3+KhJdXS2zLDco1lk2WXlZnV\naKuZVlVW96wp1t7WIut11uesP9jY2iTbLLKptWm3NbDl2hbYVtk+sKPbBdpNsauwu2FPtPe2z7bf\nZH/VAXXwcBA5lDtccUQdPR3FjpscW4YRhvkMkwyrGHbbiebEdsp3qnJ67Mx0jnIudK51fj3canjq\n8JXDzw3/6uLhkuOyw+X+CN0Ro0YUjqgf8dbVwZXvWu56w43uFuY2x63O7Y27o7vQfbP7HQ+Gx2iP\nRR5NHl88vTxlntWeHV5WXmleG71ue+t5x3ov9T7vQ/AJ9pnj0+Dz0dfTN8/3oO+ffk5+2X57/NpH\n2o4Ujtwx8qm/hT/Pf5t/awArIC1ga0BroHkgL7Ai8EmQZZAgaGfQC7Y9O4u9l/062CVYFnwk+APH\nlzOL0xiChYSHFIc0h+qGJoZuCH0UZhGWGVYV1hXuET4jvDGCEBEZsTLiNteEy+dWcrtGeY2aNep0\nJC0yPnJD5JMohyhZVP1odPSo0atHP4i2jpZE18aAGG7M6piHsbaxU2J/HUMcEzumfMzzuBFxM+PO\nxTPiJ8XviX+fEJywPOF+ol2iIrEpSStpfFJl0ofkkORVya1jh4+dNfZSilGKOKUulZSalLoztXtc\n6Li149rGe4wvGn9rgu2EaRMuTDSamDPx2CStSbxJh9IIaclpe9I+82J4FbzudG76xvQuPoe/jv9K\nECRYI+gQ+gtXCV9k+GesymjP9M9cndkhChSVijrFHPEG8ZusiKwtWR+yY7J3ZfflJOfszyXnpuUe\nlehKsiWnJ5tOnja5ReooLZK2TvGdsnZKlyxStlOOyCfI6/L04E/9ZYWdYqHicX5Afnl+z9SkqYem\n6UyTTLs83WH6kukvCsIKfp6Bz+DPaJppPnPezMez2LO2zUZmp89ummM5Z8Gctrnhc3fPo87Lnvdb\noUvhqsK/5ifPr19gsmDugqcLwxdWFWkWyYpuL/JbtGUxvli8uHmJ25L1S74WC4ovlriUlJZ8Xspf\nevGnET+V/dS3LGNZ83LP5ZtXEFdIVtxaGbhy9yqdVQWrnq4evbpmDWtN8Zq/1k5ae6HUvXTLOuo6\nxbrWsqiyuvVW61es/7xBtOFmeXD5/o3GG5ds/LBJsOna5qDN1VtMtpRs+bRVvPXOtvBtNRU2FaXb\nidvztz/fkbTj3M/eP1fuNNpZsvPLLsmu1t1xu09XelVW7jHes7wKrVJUdewdv/fqvpB9ddVO1dv2\nM/eXHAAHFAde/pL2y62DkQebDnkfqj5sfXjjEcaR4hqkZnpNV62otrUupa7l6KijTfV+9Ud+df51\nV4N5Q/kx/WPLj1OPLzjed6LgRHejtLHzZObJp02Tmu6fGnvqxukxp5vPRJ45fzbs7Klz7HMnzvuf\nb7jge+HoRe+LtZc8L9Vc9rh85DeP3440ezbXXPG6UnfV52p9y8iW49cCr528HnL97A3ujUs3o2+2\n3Eq8def2+NutdwR32u/m3H1zL/9e7/25DwgPih9qPyx9ZPyo4nf73/e3erYeexzy+PKT+Cf3n/Kf\nvnomf/a5bcFz+vPSF2YvKttd2xs6wjquvhz3su2V9FVvZ9EfOn9sfG33+vCfQX9e7hrb1fZG9qbv\n7dJ3hu92/eX+V1N3bPej97nvez8U9xj27P7o/fHcp+RPL3qnfiZ9Lvti/6X+a+TXB325fX1SnozX\n/yuAwYZmZADwdhf8T0gBgAHPbdRxqrNgvyCq82s/Av8Jq86L/eIJQDXslL/xnEYADsBmMxdyw3vl\nL3xCEEDd3AabWuQZbq4qLho8CRF6+vremQBAqgfgi6yvr3dTX9+XHTDYuwA0TlGdQZVChGeGrQFK\ndNNAMBf8IKrz6Xc5/tgDZQTu4Mf+X6HkkC/R2q9qAAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEA\nAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAA\nAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAADBqADAAQAAAABAAACUgAAAABBU0NJSQAAAFNjcmVl\nbnNob3RFTFmlAAAACXBIWXMAABYlAAAWJQFJUiTwAAAB1mlUWHRYTUw6Y29tLmFkb2JlLnhtcAAA\nAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUg\nNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIv\nMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgog\nICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAg\nICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj41OTQ8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgog\nICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+Nzc0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4K\nICAgICAgICAgPGV4aWY6VXNlckNvbW1lbnQ+U2NyZWVuc2hvdDwvZXhpZjpVc2VyQ29tbWVudD4K\nICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+Cs/w300A\nAAAcaURPVAAAAAIAAAAAAAABKQAAACgAAAEpAAABKQAAZiUl9G6jAABAAElEQVR4AeydB5wURdqH\ny4RnPLMoKKCAd+acE5hzAAMokgRFguSckQxKkAwKKGDOmBOm+wyYI4iiYjzDme9M+9W/oIae3p60\nO2F39nn5sdPTXV3d9XRPd/2r3nprnRJrBoMABCAAAQhAAAIQgAAEqjSBdRAGVfr6U3gIQAACEIAA\nBCAAAQg4AggDbgQIQAACEIAABCAAAQhAwCAMuAkgAAEIQAACEIAABCAAAYQB9wAEIAABCEAAAhCA\nAAQgYBAG3AQQgAAEIAABCEAAAhCAAMKAewACEIAABCAAAQhAAAIQsAQYY8BtAAEIQAACEIAABCAA\nAQggDLgHIAABCEAAAhCAAAQgAAF6DLgHIAABCEAAAhCAAAQgAAFLAFcibgMIQAACEIAABCAAAQhA\nAGHAPQABCEAAAhCAAAQgAAEI0GPAPQABCEAAAhCAAAQgAAEIWAK4EnEbQAACEIAABCAAAQhAAAII\nA+4BCEAAAhCAAAQgAAEIQIAeA+4BCEAAAhCAAAQgAAEIQMASwJWI2wACEIAABCAAAQhAAAIQQBhw\nD0AAAhCAAAQgAAEIQAAC9BhwD0AAAhCAAAQgAAEIQAAClgCuRNwGEIAABCAAAQhAAAIQgADCgHsA\nAhCAAAQgAAEIQAACEKDHgHsAAhCAAAQgAAEIQAACELAEcCXiNoAABCAAAQhAAAIQgAAEEAbcAxCA\nAAQgAAEIQAACEIAAPQbcAxCAAAQgAAEIQAACEICAJYArEbcBBCAAAQhAAAIQgAAEIIAw4B6AAAQg\nAAEIQAACEIAABOgx4B6AAAQgAAEIQAACEIAABCwBXIm4DSAAAQhAAAIQgAAEIAABhEE274GSkhKz\nzjrrZDNL8oJAURLgt1KUl5VCQQACEIBAJSdAj0E5L+Crr7xiHnvsEfPJxx+bn376yWy33famZevW\npl69+i7nP/74w3zyycemdu06kaLhmaefNm+++YZLe8qpp5latWqV84zYHQLlI/DBihXm4Ycfcpns\ns+++5rDDDi9fhmv2/uzTT83dd91pVn600nz973+bLbfc0px8yqnm+BNONP/973/N3Ouvcym32247\nc26jxlk5JplAINsEcvX7yPZ5kh8EskHgzz//NOutt142siKPSkIgK8Lgqy+/ND//8nOsyDvssKP5\n29/+Fvte1oUvvvjC/PrrL7Hd69TZJbZc6AW1eF43Z5ZRxT5sHTt1NvsfcID5+eefTJ9ePc2PP/7o\nhMHAwUNKiYMbb5hnHnv0UZdF5y5dzT777hfOrii/i82sGTPMhU2amuo77FDQMq788ENTYv/JdrT3\n7oYZ3Lufrlplfvv9N7dvrVq1zbrrruuWU/357ttvzX++/49Ltummm5ptt90u1S552/7Siy+YKddO\ndsdTxf2CC5uU+9hPPP64WbjgBiOhHLQTTjzJNL3oYvOT/Y107HCF2yQRPWjI0GCyKrX80cqV5q+S\nv9Iu8wYbbGBq1twp7fQkLB+BXPw+yndG6e9dkZ676Z915Uj5v//9zwwdMjjuZIddNTztd0LcjgX8\novrK9dddZ5YuXWpWrvzQ/PLLL2YH+46+4MILzUX2WS37/fffzXPPPWcbQOuZHXfcMfJsr7nmatcA\n5Dde2qatqVOnjv/KZwUmkBVhMGnCNeaVV16OFfOMM88qd4ufBEHXzle6lkSf8fXzbvCLBf9UZV6V\netlGG21kjjjyKNcCqtakhscfb3bffQ/z3LPPmlkzp8fOdeiw4WannXeOfddCVRUGX375hRk1Yrhj\n0at334KKg359exu1Zssuad7SNGjY0C2n+vPbb7+ZDldc7h6SSttvwCBTt27dVLu57RPsQ/O1V19x\ny2od12+moli2Kz4ff/yRGTp4kFHLk1ztDjn0MLPTTjubzz//zL1U1FOGMFh79a+4vK1tEPl17YoU\nS9WrVzcjR49NkYrN2SKQ7d9Hts4rnXwq0nM36ny/tQ0mL7/8slm+fJn5/vvvzXq2oUXPCr0399pz\nT7P53/8etVuFWPfzzz+bo486Mu5cXnjxpUrV2v7kE0+Yq64aZr777ru4cujLeeefb3r37mOf25+b\ni5o2cddHz/NWrVqbK9q3L5X+3HPPMWrk8DZz1mxzgG0wxSo+gZwIg00328yMv3qCqVatWpkJPHD/\nYnPLzTfF7V9RhEFQtKi1buhVI4xezmH7z3++Mz26dXWtpNtss40ZPXZ8qdaDqioMxOoL+4AZPWqE\nw1ZIcaD7TPeb7IADDjQdOl3pllP9ee21V82Eq8fHkp19zrnmrLPPiX1PtPCXrSC3t4JC7jOyQYOH\nmtoVqCUl2xUfCcD33nvXlfXStpeZI46If3lqA8LA4XF/EAZrWVTEpWz/PvJdxory3A2W+7133zVz\n5sw2T9iK6V9/RfeWbbLJJqZly1bmoosvLlfdInjcbC5XdmGw0lbiVeH376UwGy8MJk+aZObOvT62\neeONNzYPPvSw0fUJGsIgSKNyLedEGAhBC/sDPubYBmWioZbFHt27GrlbBK2iCIPly5aZEcOHuVM7\n8qijTOtL2wZPM275B9vqscy2fuy99z6RD7OqLAwEqiK8pPRSGjVyde+Fen+unTLNrJuGT+UN8+eZ\nxx97NHa969pu1X79B8a+J1pQa9gI2yoj23zzzc2ESdeWcjFLtG8+1mez4qOX/GVtWjtxvO222zpx\nrFamsCEM1hIJCoPG551v743k7mmbbLJxmZ+1a4/KUroEsvn7SPeY2U5XEZ67vkyzZ80yM2ZMTygI\nfDr/Wb9+fTNv/g2R71OfphCflV0YtGh+iXnjjdXjHcXv77Z3po11/xHvj2yv78Ybb2JOPvlkM2/e\nXDNp4sQY4q233tosvv8Bo0bSoCEMgjQq13LWhcHWtmX8m6+/NjvWqGGGjxhVJhr/+tdzZub0aW5f\ntbR/bfOTVRRhsOTJJ2IDJeV/LT/sslpVFwbippeUr5j36tPX+jNG+yyWlXGq/dSC36H9FbHxLH37\nDTD17MMwlfXo1iV2byqtBmhNnjLVupZtnHRXDcC96847XJrDDj/CtL3s8qTp870xmxUfuS707tnD\nFWGfffY1nbt2iywOwmAtlqAwuG7u/AolGteeZdVdyubvo5AUC/3c9WU///zzzIr33/df3edWW21l\nateubT777DOjsYZhu/jiZqZL167h1QX9XpmFgcYRyA1KYye9XXf9XLPPPvv4r7FPNXZ2tezlPq76\n2ZWdO5tTrTto2BAGYSKV53vWhcHBBx9iXnjheUegW/eeZs+99sqYxqAB/Y38kiUyttxiC/P+modG\nRREG99x9l7nzjttdudRboF6DshrCYDU5+ZuPHrnGragA4mDalGtj9206Y2R0vn1793InLxGhXiSZ\n3JDkjpTMRo64yix77z2XpO3l7bIW9SfZMTPZls2Kj8qp8so0DkcD0KIMYbCWCsJgLYuKuJTN30eh\ny1fo567K74XB9ttv7xpJ9t9/f7NzYCzea6+9ZoYNHWI+tEEivKnX8e577jE1atT0qwr+WZmFweuv\nv25atmgeYyiu99x7b+x71MKXNuiMhEGiiEUIgyhqlWNd1oWBXvyzZ810pd9rr71N1+6rWwvTxfHO\n22+bMaNHuuSnnX6GHRn/kmtR1oqKKAxUXlV4ymoIg7XkCvmSevbZZ8zsmTPcySj6lSJIJbOHHnzA\n3LRooUtykW29WnDj6oHxxzZoaJq3aJlw1//ZcQUaX+AH4k6cPMVsZsfkVCTLZsUnKAySud0hDNbe\nAQiDtSwq4lI2fx8VoXyFfO6q/BIGu+6yq+nTt69zrYxi8rENB97kwgvi/N9Hjx5jQx2fEJW8IOsq\nszB41AZT6bWmZ1fwDjjwQDNz5qxycUQYlAtfQXfOujAYM268mWgjrnxqo7xI1V9l3YkShbOKKvk1\n48eZ119/zalQ5XXVsKGxsQYIg7XEFHZu5YcrzQ8/fG9q1KxpGdcw66+//toEaSxp3gV10/7731+Z\nP//400Z82Ny58cgXvFBWqJfUDz/8YDp36uC6UnXfTrp2qlEY0UQ2dvQo8/bbbzk/19Fjx5kuV3Zy\nSRV2VPdtInvdtn5dc/U4tzkdAaKE8tP/6quv7G9qlfndRkKqYUNTKnxcptc7fE66hz755BPnG6rf\nqHeBymbFJx/CQC/kzz771Hz5xZdGLgj6Pcg/trJaRRQGcjH43obX/bedf0JzUKxnnzUKuFC9+g7l\n8vXW/C+ff/G5u6+337662WWXXRKO79E7Re4v//3vr85VVa2a5QlwIfcJhWP89ptvzWabb2bnkKlt\ntrA91KmsrL8PhXhUT7jKoPluau5UM/abS3XMXG8v1HNX5Vr60kuuIpqqjN26djFPPvlkLNmll7Yx\n7a5YHeI4trKAC8UkDA459FAzdepqd+6yIkUYlJVc4ffLujAYPWacedcO5rz+utmudMfaAcjN7UDk\ndEwhI/v36+MqZ7oxL2/X3nSysc0VV1cWFAbyb1OYVJkqsmPGXe2WU/25dvJE9yBSOvk7y+85HVto\nW4QfeeThlEkV6lIhL2XptIJm2mOg8Q2L77vPVeaDJ6PuPIVIbXXppfbltmVwU6llxe1XFJ6XXnox\ncsCXKlZdunY3GlRUCCvUS2rY0MFG4WZluvd0D0aZWv07tG/nBtT6XrGB/fu6SrbS6zewne0Wj7JF\nCxeYhx960G0686yzzTnnNopK5tZpULQiJqkyEY7/r+utcTxNml5k/vnP3RPmoQ39bThWVapk02fM\ncpW622+71TxiJzFTz4XsxJNOdnlpOd2Kj8KtTp40MZZHo8bnmdPPONP18l1r16cyjSUZMWq0S5bO\nbyWYn2KG33H7beaF5583iv4VNom6gw851Jx/wYVmww03DG82wefAFe07moMOPrhUGr/imaefMnNm\nr249SzWvw0w7iPJfzz3rdh089KoyTVhYHmGwYsX7ZrhtTFFFXsJx+MjRthKaeI6MoAtdVNhcVXae\nfOJxO9fKI5EhDHUfnnra6Ub3ciKhGnU/KUrVghvmx34znrV+Nxdd1MzsHfBtVtqbFy2yriQf+GTu\nU3OG6H5TJLBE84dEHVuC+Cab3wvP/59RyOGgSVDqPj7q6GOCq+OWo/KMSxD68v7y5a5HURNd+t+b\nT1LD/oZbtr7U7LpremGO/X65+CzUczfdslxr51ZRfH1vZ9l7buCgQf5rXj4l7uTa/MEHK0zt2nXM\nP/7xj5grTXmFgYSq3KUkVjfZZFMnkmvad3GiezubBQ73GBRSGOjZpQard999x1TboJod76e5Empk\nPNZK49tWrfrUhVdVgIZdbK/UTjvtlBee2bw2hcgr68JA8bTld9aty5W2NfsH16Iz/pqJSVtffcEl\nJp5assR9HTBosLuQihOvH5wsKAw0YLRb1862UrB6kqh0YsjrhdC5U0dXydpqq63N2PFXp32TFFoY\nKITY3OvnmOf/7/8ci0R/5JbSxg5mVYU1yl584QUzfdqUSEEQTD9k2FXWz7NWcFVelwvxkgoOCk7m\n9vLKy0ttVIYJjocm59IkXbfecpO5f/Fit67ZJc1Nw+OOj+Q1oF9f+7D6xG1TBCNFMgqbhMctt9xs\nnnj8sbjBYOF0+q7eDR1f0WvCUSF8+qAwmGaFwTwbau7/7AD/oGUqDBRZadyY0bGKVXBchtz/cikM\n5G6oZ4Var1OZKsVt2l5eivOzzzwdc3k8+phjTUsbizuR6Vrrmss0kdiw4SMSJXW9Toq/rlmdr54w\nKWG6ZBvKIwyUb/BZJZeADh2vjDxc0G2zVu3aZuDAwXGt9Qoi0bdPr9g1jsxkzcqo/X36cEVaFSrN\n7xKuJPv0Ehs65333288oEMUc65qaKK32kYhQQ0aUhY99jL3W48eNiQsaELWf7gn9jqPETjjPRBMA\nqoKjBhgJ2GTnr/JKlElgFdoK8dxNt8wjhg83t1uW3tq1u8KOWWrjv+b0c7kVdyOGX2Xeeeed2Lw1\nOqAmclVs/iFDh7m6TqbzGOi9rohMDz34kFFFNmzVqm1oG37+YbpZl+w99tgjvLlc38VSTNMx9cQ+\n8uhjLulDDz1knwu9Y7sdcsghZuq06bHvfiHTHgP1io+2PfEv2DrKL2vqfD6vjW0o1FNPPdUOeu4W\n2dDj06kB7ZGHHzaLblpk3nrzTb869imederUNt26dU+rlyq2YxVbyIkwUBdzsJLlWxKTsdVId1X0\ndWHr1atv+vYf4JInEgbaeNutt9jW89UDZI47/gRzcbNLkh3ChZZUiEmZWpkUdz5dk9uIn6zj7bfe\nMm+++YbbVYOtgzHoVZnew07EIkunFTSdHgOJoKFDBpmPPvrI5aseknNtq9auu+7qQoitsur6Udub\noR4AmWbuHWPnTFAozKCpNVxhVvWS0gtPrW2abEo/+h+tiPvKuhS9acOVaZba3tbfs5DCQOed75eU\nWmqGDBrokKnX5ZqJ0RW7eddfZ7u0n3DpJIR1v7/zjh0bM2r12Jj99j/AdLqys9se/KN7/ErrriRT\nzGe5K4Vbg1SZ0LVWr45M10kVhvr1dzM716plX0q/GblfvPrqq64l1yWyf3QdL7cvyigLCgM/BmhL\ne80PPPAg5zqmSr5apnzFJFXFR8JmpH1JqoVLdtLJp7gZrP2x9YJ72c6aKZObmu4nmX4n+r14U6vY\n0ccc476m81tRwmBPob5LWDVocJxrmVewArlpfPTRSvdc8MJBFS9NLqgeFm86XqeO7Z3wUs/YODvv\nSpSpRbmj7R0KtixfM3FypMuJuEj4yVKNNYk6ll9XXmEgYalJ+7755huXZe++/cxuu/3DZ+8+9UwZ\nMKCfm9hPfAbbik149mT9/jTAXuLzIHvd/rn77q7FTa13el68anuMbrUC1vdmXdysuTnOTu4YtuD9\npAYL9QBsuulm5oImTdx9XWJd5VbYFtibbG+aP2cJqyu7dLO9H0NcRez4E050819sb39rn9tINU89\ntcSo99Rb9x69Ys9dv06fwWOrN/c9OxhePdPqKT7K3nu1a9U21WyPkp7tz9lxRhIi3k497TQ7qdOF\n/mvsM5hnsh6kG22PiHpaZOq10vtmjz32NNtasfqFdZ/Sb0TvLx+3X+Im2FMSO2CeF/L93E23eE2b\nXOiun08/3Ar0k085xX/N2ef9VtwNv+qquPEN4YNpBuDxV19tzjzjjLhNySY4e/aZZ8xIG3BDE4al\nMr0nmtn6zeXt2pXLfS54nIokDB63jWDDhg0zekcmM9V5Ro4cZXaNmEhUz+judt6oZ59d3WObLJ9h\n9npGRVJKtk9V2pYzYSD3H/UaqOtNlaxxV18T63KLAqxWlXvvudttUmuRWrpkyYSBFGbvnt3dy12V\nYL2wwxUtl8maP95VRC86nY96DcpiwahEyQYfp1PZSUcYyIVJrYAyRXlq36GTa6kIn3tQKOlFqkGx\nQQu6sSSb4VetGOvYHSUwCm0KV6dJ0HQ+Pe0MyZmMV8n03FUp79q5U6wXSi3D4cqS8uzWpbP59ttv\nrAvb2vEEqhzJvUiVskRzIaiVfsaaMLyqILdrv1okBM9TFQlVKGTyub6iQ4eEAk2t2LPsgGk/S26i\nHoigMFDlWBXB7jZiWKJZRJNVfFTZHnHV0BijoOtcsBx+OZtjDPTg79u7Z6zyqOAE51pXrKg5JzQJ\n4ayZM2Mt/XvuuZfp1qOnPy33qbkklltRJJNLU1SY3FdfecVMnHC1E9l6pukeSfSbDw5Iz8RN0Z1A\n4E9QGOi8Us1jsJ1tKAgzCI5lqW1b6DWYXs89b8FzlTubXIHCpgri9KlTXct5VM+W0qsHUz2QskRi\nOng/KZ2EdO++/UuNA9GYJwkaXznQ70j3thp81PATtoULbnTucFov0dKzV59wkjhhoPtejSIXNmnq\nxGypxHaF5iXxjUcavyAX1fB4lWB5EgkDNeIMGTTA3S96zygMc5RLlxpi1IMh0+y+Q6z7WfA6uQ0F\n+JPP5246xZNg6xCYXVfX5r7F9+fc3fXOO+5wMwGHz1HXSFGUvra9al4Yq9fMNx769ImEwV133mkr\nwkN9stin6i+6T4L5xjbahRPse33U6NXul8H1ZVmuKMJAveOjR42KK4IaquQa/Yt9jus34j1DlEjv\nxbvuvruUQOrZo7t57LHVvRo+MwkIDWz/668/nXvSStsAIDdUhIEnFP2ZM2GgwwVbVpOFZdQLXyJC\nLwZVtjSY0z8ckwkDHUOttGqtlSULj6qWxD62UiFL1vXsEqT4k09hoMqIxI9aZzWj9PDhIxNW6MRR\naTWduVqa1QoafKkNti8q/+AaO/4a5/KVoqgF35zvF9R1dvbNp21rpCxqjopgq7DcheRu4E1jXtSi\nLetjKz71d9vNb3Kf8lOXv7qstR04d+RRR7tl/0cVot69err5FHT/qxU3Va9NcIZwDWaWC57/7fh8\ng8JAlSPNwJ1s/Eiiio9cA4dbUfCVDVMnk7tVq9ZtSh3PH1ef2RQGap2+f/F9LvsDDkg9Q7VeAJpr\nwo9R6tylq9ln3/1ip6e8lKfMu4TFNq5Z8O6NEnKq7Kk35NDDDjeX2TCzYbt63Fg7QdDr7oV17dTp\nCV27wvuFvweFQXhb1PerraumeoDCNn3aVFtx/5dbHRQzesn26dXDtYDWsr1QAwcNKSUstJMqPKqo\nJGtskVDSZJRyO5JNnT6j1IDa4P2kNO07dnK9VVoO23333mM0/sWbejrU4xFlqjz1tMfWOcilQ25y\nYQsfO9G1C+6n4AASVjK56eneCFowz0TCwItO/Ra79+zlKjnBPILLwfEu6YQ7Du6bq+V8P3eTlUO9\nSM3sbMdBV5tG1vWqb7/o+yJZXplskyg988wz7OD01T1v2ldjl/r26297r45wy3rnPmdbqIePGB6X\nzh/n+RdeLOWOpvu20bnnuPqOT6fKbj9bnv1sqFbNJKwGVY3VHGnzVS9X0KbZ39jBScZEBdMmW9Zz\nQD1Xsueffz5u0rJ//vOfpv+A1V4b2r7eeutbT456WjTZdCVS426jRufGXIck+Dp36WIjVV0Qe6+o\nXjho4ADz5JNPuuPrTxf7LL+42dqGT9V5Tjj+OPcs0HYn6seONUeF3rF6F9x8001ubEh5wszrGMVs\nORUGerioUqIHd+3adcygIaUVsuAGW2ma2lZuqWJvqYTB/9kX3wz7ApQdccSR5tK2l/ld4z71stFL\nRyY3D7l7lNXyKQyCx5IfuVpJk1nQvzjcvS43Ih9v/8rOXZ0Pb7K8Cr2tEF3aipChF7Vsd+vT2aPn\nWl9KrdM4Ao0nkIUZakzA/Hlz3bagz71bYf/4ngZ9l5uSWliDph4z9ZzJDrOVT4npVKYXkypmvpVV\ng03DvSpBYZBOxSiq4qOX5OiRw2PubBrYq8pxskqjzj1bwkCuL5e1vTRWWb1qxMjIFv4wrwcfuN++\nCBa51eFeGj2f+lkfellUY4GeW52v7OjYaiZ3vaA1sDhqtmpVotu3u8y5HO233/6mU+cuLt+y/MmW\nMNBLUD0serHqXhs1ZqxzafEDpCUSBw0e6lqqy3Kefp8JV483r732qvs6eMgwo5bToAXvJ7l7jbWt\n8GHx6tNLfA0e2N9/db086u1JZBI4fgKsKdNmuEpVMG3w2GosUQ+A3JSSmQY5Dx08yCXR4GBF1gta\nMM8oYRC859XDqwarZLZ06doxOXLvlOttIa0Qz91E5VWFr337K4wCMXhTY9ciW7lTZTqXdt2cOWbK\nlGtjh9Dv/vq582xdpnZsnV9QTP/zz2scV9nXtihh0KN7dyPXGW+qcE+fMdP+Rrfwq2Kfer536tjR\nvPjiC7F1daxL5k0331JKcMQSlGEhPPg4WbjSbAoDhUjVsb11ts/NZpdc4r/GPtUweuYZp8cCIKi3\ne/F9i43GHsgetoE0+vRe+64+xroJXn1NtHtoLFMWEhLIqTDQUYMvjagZZfXy7W0f7mqFVLjEayZM\njHNhSSUM9ELWgGINLFbXs+LChwdh6hhqOVTLg16Q460bUbjrPSGhiA3BynqwJS6cNBuuRMGoIUOv\nGuF8fMPHCX7XWAMfUz/sLqS4+3IhkIlDJztjoVqZK6IV6uUkNyr5lOu+UkVClQ21PnjTDM16SWmb\nWoWDEW/kT9+zezeXdBfbfanWe2+qvKgSI1NkBF3LsMnNyA8K7t3H+oXbiBfpWLCXQxVSVUyDFhQG\nQTe9YJrgcrjio4rK+LFjXJQIpZOo7tChY1q/oWAlKdmA7lS/FbUW+hmU//GPfzrXjOA5J1qWy5cE\nmUyt44oUFLRePbq5ULC6jrqeuq7eFH1EPu6qxMpNUT2TvhEiHHFI2/wYE4mIY2w0trJaUBhoLFQq\n0xgPPfuiLDg/h3zcFcHKTzin7+nkH5WvhNrX9nmq5/a9994dm7AvyoUqeD/5KF5ReWqdxIwi0Xm7\n1oZM3GSTTf3XUp/ByQKjXP+Cx1bvm4IqpDK9L9pe2so9A/TbnzFrTtwuwTyjhEGwgSDc0BWX0Zov\nwV5ICe52V7SPSpaXdYV67kYVTuGZ5T6kOQy86fepFnNNgpZL0z3QsMGxLoCKP06btm3N5UkaaxYu\nXGDdwsb55O4zLAzUY3/uufG/6SlTptpeyMPi9gt+0YDniy9qGlxl5tjoTPsGej/jNpbhSyGEgdx6\n1HPiTe5Dd951d8LGpgm2R/6G+fN98jgGD9x/v+nff20PUv369c2ChYsS5hXLhIVIAjkXBsHIF1ER\nMoKtJVEP2VTCQKUKtpK3txWWAw86OK6wwZd2Nlpk8ikMgmEwk7Wc+QJ/b+c10OBU2Sl2mnKFa/Qm\n8dTPRhNQ1BSZKjzqumzY8HjXOp6oFc/vn6/PQr+c/BwFKm8XG71g7733cUWX33pH23olP2X5P/bo\ntbaFwrPxLZhiOdk+8H2lJtgrpkG+59mu0rBp4LMGQMsSuYeE99H34P0Y5f4UFAbqtatdu05UNrF1\nwYqPXCnUla7fqUwtoOopCVagYztGLGRLGCg06gQ7P4pMA5Zbtro04milV+kF36Z1S3fNotxNguNu\n5KMuX3VvfsxOXeunqqhnanlXpVV5hnvvfFpdd0Ujimr98/mm+gwKg+vmzk/Yup4qH7993NjRLkKH\nyr+VHWitwbfyZ1dvgXoNUplE8vLly4ye5RoU/+VXXzrXoahIO+FeNOUdvJ8aNDzOhnNukfSQrVpc\n4hjrtyNhkMyCbjhRkemCx042QD98DLmdyv1UNmHStXEumcE8o95ZwfeRGl4UaCCZia9CM8qUPtXk\nisnyKs+2Qj93g+euyDS9rFul7wnVNj1z5Bt+on0m5drk4nLKyWuPo9/JozYqT6JxWTqfDz74wJzX\nuFHcqYWFgXoK1GPgTY0cCxYu9F8TfrZq2cL2yr0W2z5g4CBz9tlnx76L0/MvPB/7nmhBg9/DPcpK\nWwhhoLGTvXv1ip3qBbau0jPwPbZhzUJ4XIYiQZ1++uluq6JGXXjB+XG7HHfccfZd1cXOjl0jbj1f\nUhPIuTDQKQwa0N/FYpfbwSgb4z04gZb3xdQPTxNDhQcEpyMMgi0uUb7Hc2bPtL7dT7sXrPyrg8dP\njah0imBFLJc9BqqAXNamtfM3LH0WqddEuVaphU++x+GY4Bp4qUrgUUcfnXalL/UZZJ6iIrycNM+A\nKoyyoI9xsEIQVQFX+mClIBgfX+E7feVaAxH1Qgjb5Ze1cYOX1eOlVsp0hZp8XBX+URY1GDgoDNSj\nFo5WFT6PYDnVki5ffVl1O6maBkcGe1DC+4a/Z0sYBF2CwpXy8DHD39WLo94c2URbyQu+3IONBuEo\nNHIzkruRItNom0w9COpJUMt7z95rB7sOGWxFna0017bd/Kpwl8eyLQw0YFz3gNwSZHrWqvKZavyK\n0uq5edOiBbGQ0VoXNN2jqrDJJ1qWShhEVaSD+WnZCwONm5BATmYa+OxDOKcSBuHoWcnyHeV8u991\nScK9Q8HfR1R51Lvmo9YlO0bUtmQRsqLSZ2tdRXju+rLcesstZqxlGBSeElfjbHjxbPjW++Mk+3z5\n5ZdNm0vXhjBWZfpe67qSzCTwDjn4oLgkYWEwx45hmzplSizNGWeeaQbb32IqGzJ4sLnHupp6a27F\ndacr14Yh1v3WPMIFx6f3nzqWjhm2QgiDmTNmuFCt/lxq1Khpx76VHivlt39vx7j5MZJaF+7B6WYj\nEj35xNpIZUqjOufBNpzqWWedZY63AQxSub5qH8w2GtvKZ0l5QQQHXfrwjcE8gxWXYLz0FSveN1cN\nXf2j8BOaBffTcjrCQOmGDbGTU9mQd3pJqfKjATwyVWoUIlLRYhRGVH735bV8CQN117exXdoKZ6cb\nWj7vmZhatdVrEDbl+7yd3OcB63/texd8Gk1uprjvcrvIt1WUl1PQ7Sc4CVfQZecqOwhcrMKmWbs1\ne7fMt2zrJ6b7+JdffnGDJOWyospZ0PQSlPuCrnVUy3YwbXj5XzZix8w10Y6CQsanCwoDTXCWKtpU\nsOKzyy67xiZYUyVQrb0KxZmuZUsY3HnH7a5nRMdNFlUm6rx62QH5fsC02AdbcPVb6Gh7AXRtgq4m\nQdel4DPNjwPRc8a7kqknTj1Jus7lcc/x555tYSBB0L9vn5g4ksumoh2l6tVQdB71dHmTT3c920W/\ns+1t0ERkip6iYBESDo+t8ROuyMIgqhLvyxb+lNuaH+waFtPB30dUnt7dUHmqt+lvCdy8wsfU9802\n29y0tfPQ5NMqynNXv59xdgC/Jp8LmiqMV9vewrp1Vw9+DW7L1bIq4aqMezvggAPMzFmz/dfIT53/\ngQfEuziFoxLJ3UVuL97SnYtBEdamr3nGa99jj7XzcViXaG+VURiotyCdSWN9GcOfYVHlgirY8Mrq\nbYoy9Ry0tWNQTz8j+TjNqH2r2rq8CANVerp37WJDTn3nfGGvsV3tqpwE/efVghXl756uMHhqyZN2\n0qPVvqCtWl8am7lSgwU12E4W5WZUlgueL2Ggcwu2dk6dPjOhL3FZyqF9VHFT96ZmAdWDTSZRNcTG\nfddEdfmyivJy8uUNViYV3UlzPfhQplvZ8IPjEwxsUiVM96xaUH3rnwSrhKss0RwH2hY8Zrgyou2J\nzFdWtT08rkTryiMMVPGROJg29Vp3f0gcKKLSEUcepaxTWraEQVD8pOOO4k9M97T3F1dPgXoMwuaj\n96hsE+xYAqXzPRRBYaj95Orl57rwcec1aeDUKZNdtlGDb8PHS/U928LAh0T2YlTPY0VnUpSmRBbs\nSVEklsvsHBmJXBk14F5+9bKKLAyCjVKJyu3X657Rb1jvKYnpoKUSBsEGhCgewbwKvVxRnrtqEBk+\n/Cojd5GgKQjDiJE2El9oTp5gmlwsz73+ejN58qRY1kcffYwd/5h8MKvKcNCB8UFNwsKgs23lf/rp\np2L5duzUybRo0TL2PdHCbBvRbpoNHewtHLZU4zCCA6V9uvDn+TaAiQ8FH9xWiB6Drnbs15IlS4Kn\nkdGy5rAYPjx+rJ6uwR23327m20aNT63LZJQ1tO6Mw0eMyKjnOyqfYl6XF2EggJrIRX64MrU67n/A\ngS5EqV5SaoXSwOQoS1cYqEfgShtBRJ9qKff+396/Vg8W+f76l2PUsdJdl09h4M9f59bf+hXuumvd\ndE8zo3SrVn3ifLh92MGDbDg0ucLkw+TLq1Y2mdxsouLJ5+M8gscIxkjXrLi1ateJRUs5+pjkM+UG\nXQnUMqtIRz4EY3P7EkjU4i4fevnSyzTBnyb6S8d8SE2ljXJTKq8wkNuUJimbP+96dzrqvVJEIg2U\nTGXZEgbBCnlUtKhE5/Hdt9+arjYUskyDuTWoO2zBWPxqrT3s8CPcAF2du6KAyXXJm4SGj1Skl7MG\nl861E95psq3yzHbs89dnNoVBME6+xraosvuIjeAhUwQ3uRtGmVzT1NMr07VWNKtE5sO0antURThV\nRTqcb65ciVKJIX8ewQHrUYECUpUnGHI1U7c3fw75+KxIz11VwlUZD1rTphfZGa27FsT9Q5OaDejf\nP3Y6ihykSEDJTD1Mp9rKatDCrkQT7Szq8+fNiyU559xz7aDZ6LpPLJFdGGY9K+66667Yqsvsc6rt\nZZfFvpd3oRDC4Bo7IdyNa+Zn0vm3tg26jc87L+2iqGc9kWCUQFhiG4vvu/deOxniU7FJBH3mF9vn\ntu4tLJpA3oSButsVHUSuPbVtJUuuQz6MYLJIKekKAxXPV5DU8icRoJe45kfQZ9h/OBpHemvzKQyC\nrXEasOpnp03vTDNLpZmRhw0d7Hbyrd2Z5ZB5ar2cNIGZrJedwEx+7BXBNJ26RJlMlaeaNpJQOver\n0gfHKKgF/+WXX3KTtGjbODt/hEI2RtktN99ku5lX+7Eea6PaNG/ZKipZ3Dr1UCiyjrpRgy3ewUTZ\nEAbKL9gzIYEt4bi/7WJPZtkSBnputLNjMPRblhuP3HvS6dFSJVgiT5aop0FuRBpUrEaKw2188iZN\nLnLuh3q5DBg42OxiZ9sMmh+z5HsTFPHs66+/Ltdsx8H8syUM9Mztb2cwV0+tfs8KZasyaoC85qRQ\nz+BwO4uoIpSFLTgQXj1m2j+RSXhJgMkqsjBQT58mttTvJJkFJ9uMChucShi8YAeBqjdclioKU7Lz\nyOW2ivTc1QzAV17Zyf22fZm7d+9hmjSNj8Tjt+XjUwN9NeDXm8JiLlnyVFKRogaGK65o53dxn2Fh\ncO8999gxBYNiafbZZx9z3fVzY98TLWi8g8Y9eBs9eow5/oQT/NdyfxZCGNx2221ungZ/8pqJWIPL\ns22rVq1yk8m99OKLsazVuPX0M89GThQbS1SFF/ImDMTYd2lrWbGIFR0nPKGZtgUtE2EQHLPQxLY2\n/GEHA2kCI70IRtofUrbiHudTGChaxWg7bbpMvsGjbDmCgyeDrMq7rIqQIrjoU+4Dk6ckjwhS3uNV\npJdTuCy6d/xMxrWtkN3Gzi6rCoEqxIo2pGuRyDRg1cfH12BgPZAUhtFXJJPtpyhUqrzpwTXUunNF\njWMI7h+cwTZqsLnSZksYKK/g4GpV0DvaOUF81CZtD1u2hIHy1TgKuRTJwnMSuJWhPxJNfo4Hnesw\nGyI2kfAcM9pOlGij7qiSfP4FFzj3Q/ngq4EhXJEMVvw0kZ0P/xkVqjN0Sml9zZYwkHuT3JxkwTC2\nwRCm++yzr9F5hy3o1qbY/4kCNgTHjymPiiwMdH5RrnZa7009zt26dnaDrXXdNdheEZyClkoY/Pzz\nz06s61OWbOLNYL75Wq5Iz10J/cZ2gquVK1fGii/XGrnYFNIU2vzEE46PO4Whw4aZ02yvWyKL8pkP\nCwM1OF1ySbO4LFKFHlXEnSYXXhAnnG67/Q7rel0nLp/yfCmEMNCkale0WzueRmOWbr/jztj40PKU\nJ7yv3gW6nnoPe5s//wY37tR/53MtgbwKAw0A1JwFehh4SxXnORNhoDx9JUhRQ37/43fzvv1RKQKM\nXCyyZfkUBjrniROuNq++strFRH6+mvhqMzsLcpSpZVUzuu5goygceuhhcUk0OdexDRok/OEp2oqi\nrsiiQsvGZVbOL+p2VeQPWUXqKQgWa/KkCeblpUudL6JaV9Uqr9mMVRlMZd1t5UIvF7W06lOWjo9z\ncHZfCYkrOnQwNWvuFHk4uR3NmD7dzZSs81MrelTXqv9NKJNMBx+HB1fqtzvLjtnxFXRFUFLFUu57\nUZZNYRCcGVrHUgz+M886O7IVTxOyqWVfblyysEuQWxn4E+zlUa+BKrxy+ZLrV9jUw6C5LiSgNXu1\nZrNWpCYJ6UwiNoXz9d+zIQyCY6uixrUEJzuMiqw2ybo8vPLyUndKiQZUy4dXk94FX7YVXRhI0Hfr\n0SPSJVMV+SnWpUXjK2SJ5hRIJQy0b1Cwq2dLAjpRFCj9pp6zY+E+tw0KQbc15ZNtq2jPXfnby+/e\nmwIDPPrY4+X+HWkwrsRseRoDFf5SlXJvciubf8ONkc/YqN4C7RcWBnpmtGzRIi5qlWYZ1gRnaowL\nm1z/utj5hvzzVtsb2OfSuPHjw0nL9b0QwkB1lXPPOTs2QaEKkI5rlSa9kwUnKlSPrd614UYcl3DN\nH4mrZcuWxVbJNczP5hxbyYIjkFdhoCP6ypaWVZlROLpkUVIyFQb+Ba+WXT1w9UPUwLlwJVnHL6vl\nWxhogNiAfqtbknXOEgWqENW2Ma9r1NjRTif+i1llJ4P52M4aqigiqsAqzrui4gRN0VdKLI/jrW+0\n3CN23LGG67lRheutt940d95xh3M70D7t2ndwrbLB/bO5LDeHWTZcmSLMJGrFzebxypJXcEC73z9d\nn+F51u/8Set3HrRuPXomHMDp06llo68Nk+nHeqjiLfex+vV3c9Fgfvv9N/PJJ5/YsQivxgZ8at9k\nLaHZFAY6lno0FIlMEZhkCmmqVlGNFQpbNoWB8lb0G/U8etM4DPXKqNIlFy21hn788UfOt9SHKFWv\npGZKTlZpV1o/OZ16F9Rj1NW6M8gVJMr8xFq6Pnp577vffq61PCptpuuCwuDAAw9Ka3dNqKY5JmTy\nkZcLkebd0LWRC1HYFUhjigYPHOCuZZRLke5d3cMy9V4p1KfG1uhlrOeRWj7vvutOt03PEvW2yCqy\nMKhte/5Ubr0XJHg1QVSNmjWccJcbpaK06f6R6Z2kgeTVq1d334N/0hEGun/62ggp/h7U+0gMFRmv\nRo2ajpsm8PrUujkoJKzG0GhsS64jElW052540ipNcpWsVT54HbTcqnXruPDaEqmtW7U0K+z11H17\nhp1JeuCgta474f2TfQ+LFqXV+Q218fP1W9M11dwmd999l5k0caL7LeneClpYGGjb++8vNxdZNynd\nI94UMadfv/5uXiE9p/SMXb58mRkxfLh9N7/lk7mIauotUOt6Nq0QwkDnH56xWOuOso0tXbt1c+87\nffemsMu3WA8QRa2aNHly3ESeGp/ysJ0X4cpOVzo3db+P/1T0o759+sTGGiiYyMOPPJpUSPh9q+Jn\n3oVBsKIQnoAr6gJkKgz0Q+1iByH7H51UuGYt1cs+W5ZvYaDzlkuRKtJ66acyPRA72B9IeAZcCQPN\nMJvKcj2WIdXxK8p2tUwoElHQwjHNg9uCy5qzQHMXeNPDXuEtVZFMZXKxU4QtPxA5WXqJxOYtWkVG\nmvD7ZVsYKF8JmLFjRrkeOX3XQDAN+N9ll3h//ODvvTwzH+sY3tQafuMN812IUb8u0adcjpo1bxHZ\nGhfep5+N9a/Jv2Qqj3oAEj03gsEUlL68sx0rD29BYeDXpfpUQAeNoVDFRBP0+VbvRPNtKL/g5G57\nW19nRVnypnzGjRlt3n57baXEb/OfqhhpAPP7tgJTWcKVqidZjVP+/eDLEvyUGOjYqbPZ0VbWoiwd\nYaD9JO5nzJhmlgdaKaPy8+vSeR/6tMXyqdbwp55aUubiPPPsc3GR+jSwVwN8g3bLLbeaXW3Y2LJY\nyxbNbQPI66V2leCW2P7cCkkvBjR4ds6c2XFpw1GJ/EbNZRBOq216d2vOBE2wpmds2Pr07WcaN24c\nXl3u74USBjrx1q1amVfXBN0IFkR8FTZdv9WV1tVM46K8zZ4zJ65+E4wipTqf3KwUVvnXX/9rReL7\n5iPbaBq0Fi2tu1rH+Hd7cHtVX867MBDwoXbwjVr1oiY0C1+QTIWB9g9OepOO+0b4mKm+F0IY6JzU\n1b3AjuJXF/9/rS9s2FT5lGuDWsOifIJVmVEruB46YVMXnFpHjz/xxIStpOF9qsJ3PzmfyqpxMRKZ\nyborPRO5ssjdRC0/MvnhaxblTEwuKvfee4/5t71e/uXj999kk01dq1XTiy6O7Nr26fSZC2GgfHU/\nquVcrZ4yuQH0sLMHB+fAyIUw0LEk2hZYcaCKq1gHTS9X9UKdeebZka1HwbTBZT97sdYlciPx6TX/\nx8ABqyMc6X64esLEyEG8Pn0mn+URBr7HVMeTC5pmB13XVuCjTM+QPnZ2WQ1OlrW+tK19fhwVS6qu\nfg04l1tMuCKtsS8XN7vEuWkGx45V5B4D7xanSE233XqzfQd9HPe7UoVCAuniZs3jKpsxIGsW0hUG\nSq4eaz13H330kbhZfH2eunf2tuM8TrMzuKYbhczvWwyfiSre6ZYtLAxU2Q5OIKZ8NLNw1ISS6RxD\nrdS97JwWwVmHo/Y75dRT7UzNvc2xxxwdtzmRMNDz/M4777CRAK9JOHlgMKPt7bwhfa0oCP4+g9vL\nu1xIYaAK/+hRI82DDz6YdjHmzptv6ymre0i1U1AYpMpEkY9628kp03mPp8qrWLdnRRhUNDhBn3x1\no0dNAV7RzjmT89FDRT51qz752LWayoVi6623cbH21YqXyjQ4Vj0P/7GVq/VtC7aU+Xbbbe8qvqn2\nZXv+CaiCJrcDtU79ffO/2whJNbNWCc1/abJ/RLXMrlr1ifstqMIqF7lELf3ZP3rx5ygBKP/3L7/6\n0mxge14luhL5y1c0Gskq8XK1ks+xXMFq17YBBhJEC8tWmVQBWmXdAL/55muzhXXJ0jNbx0zm4pat\nY1fUfMorDJ597l9xkWXU23pJs4vt82CVq/iddNJJNmb9yHIVX6J4op3D4C7rMvSL/S0ETWMYmtte\nhQsuuNBV8I8+6sjgZpNIGPhEaqQbbyd100Dc4Fgdv10NfMfYycw6WQ8ANbzkygopDHyZ5O4jUSdX\n2XBDmNKo/HIza9S4UanJ7l555WU73m6Gjdy0NNYY5/PVpxqLDjv8cNfbIlclREGQTunlohMGTuHb\n8I26sZLNj1AaBWsgAAEIQKCYCCQTBsVUTsqyloDe/a/YYB3yw9eYgGyZen/Uy/TuO+/YXrjVLj+7\n776Hq3Rm4xiqu2isi8SC3GDq7LJLyt7gbBy3ouWhnkyNEfnwgw9MtQ2rueuohktdz1QNPhLfH374\n4ZqGz/+4CI7VbW+L3AKDg5UrWpkr2vkUnTBQrHnNWipLNoFPRbsQnA8EIAABCGSXAMIguzzJDQIQ\nKH4CRSUMpBb79u7puvTkHjNqzLiUCrP4LzElhAAEIFA1CSAMquZ1p9QQgEDZCRSVMAiOLUgWvrHs\nuNgTAhCAAAQqCwGEQWW5UpwnBCBQUQhUamGgycvkd/bpZ5+ap596yiiMoUwD4wYMGkxvQUW5yzgP\nCEAAAgUggDAoAHQOCQEIVGoClVoYdO1ypfnu22/jLsDmNqTkoMFDbISerePW8wUCEIAABKoWAYRB\n1brelBYCECg/gaISBrvvsYeb7CnbswKWHzM5QAACEIBAvgkgDPJNnONBAAKVnUClFgaa3OjLL76w\ns8lWMzvX2rnSxNau7DcN5w8BCECgMhD4wca1V4hJmeYM0BwMGAQgAAEIJCZQqYVB4mKxBQIQgAAE\nIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNa\npIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECR\nEkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAAB\nCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUA\nBCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAY\nFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAA\nAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAA\nAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmF\npVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDI\nhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhA\nAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQ\ngAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADC\nIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQ\ngECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAE\nIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNa\npIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECR\nEkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAAB\nCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUA\nBCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAY\nFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAA\nAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAA\nAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmF\npVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDI\nhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhA\nAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQ\ngAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADC\nIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQ\ngECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAE\nIAABCEAAAhDIhADCIBNapIUABCAAAQhAAAIQgECREkAYFOmFpVgQgAAEIAABCEAAAhDIhADCIBNa\npIUABCAAAQhAAAIQgECREkAYFOmFzVaxWjZvVu6sdqxRw/Tq3ddsvvnm5c6LDCAAAQhAAAIQgAAE\nckMAYZAbrkWTazaEgWAgDormlqAgEIAABCAAAQgUKQGEQZFe2GwVywuD6+fdUKYs/f7aGXFQJoTs\nBAEIQAACEIAABPJCAGGQF8yV9yC+Yl9eYSBR8NmnnyIOKu+twJlDAAIQgAAEIFDkBBAGRX6By1u8\nbAmDiZOnmNGjRiAOyntB2B8CEIAABCAAAQjkiADCIEdgiyXbbAkD9Tj88MMPiINiuTEoBwQgAAEI\nQAACRUcAYVB0lzS7BcqmMNCZIQ6ye33ILZ7AI4887FaccMKJ8Rv4BgEIQAACEIBASgIIg5SIqnaC\nbAsD0axK4uDBBx80L774RQC9OwAAJeVJREFUQuwmOu20083+++8f+x618MvPP5vxV4+Pberdu4/Z\nYIMNYt9ZiCYgUbDwxtWD5Jte3MwgDqI5sRYCEIAABCCQiADCIBEZ1jsC2RIGyXBqYPLwEaOSJam0\n20aPGmVuueXm2PnvuOOO5pZbbzMbbbRRbF144bvvvjPHH9cwtvqZZ59Lmj6WsAovBEWBx4A48CT4\nhAAEIAABCKRHAGGQHqcqmyofwkBwyxr1qKJfmLAw0Pk2bXqR6da9e8JTRxgkRBO5wYuCgw8+xHz/\n/ffmjz/+MFtutZV5yfbUIA4ikbESAhCAAAQgEEkAYRCJhZWeQHmFgc8n0Weu80903HytjxIG6667\nrrl+7lyz5557RZ4GwiASS+TKoCi47PJ2Zty4MebPP/80vXr1MdOmTc2pOPjpp5/MpptuGnleUSt/\n/vkns8km6aePyoN1EIAABCAAgVwSQBjkkm4R5J3rinuu8y/0JQgKg+233958+eWX7pR2rVvXLFy4\nyKy//vqlThFhUApJ5IonHn/czJ93vVFPgUTBuuutZ8aMHumEQZ++/c1fViBMnz7VvPjCC+aS5i1N\ng4Zr3bMiM8xg5ad2To4xNvzuiSedbE47/YyUe3737bdmlE2/1157m4ubXZIyPQkgAAEIQAAChSCA\nMCgE9Up0zFxX3HOdf6FRB4WBXIgef/wx88UXX7jTatfuCnNpmzalTjETYfDbb7+5/D7//HOz7rrr\nmJ122tlst912dnndUvkmW/Hrr7+at996y9TZZRezlXXDibJvvvnGLF+2zOy0885GYyXWWWedqGSl\n1qll/b333jPVqlUzda0gSja+otTOSVZ8tHKleeKJx80llzR3okBJg8JA3yUO5s+fZxo0aGhq1a6t\nVeU2Me/Vo7v5z3++c3k1Pu/8pOLAi4Kv1ohC3JvKfQnIAAIQgAAEckQAYZAjsMWSba4r7rnOv9DX\nISgMLraRcg459FDTsUN7d1qqKC9cdJOpU6dO3GmmIwyef/55c9utt5olS550LeTBDGrUqOnGMBxz\nzDHB1W752GOONj/++KNbnnPddWabbbY1AwcOMG++8YbLR4Ji7733MR07dTT77rufS3fvPfeYG2y0\nnxXvvx/LT5XsUaNGm/r168fWhRf+71//MmPHjjEfffSRKSkpcZslJvbaay8zZOgws7MVGNm2sDDI\ndv4+v6UvvWSmTb02xj6ROAiLgvq77Wa6duthNtxwQ58VnxCAAAQgAIEKQwBhUGEuRcU8kVxX3HOd\nf6GpBoVBk6ZNTffuPczAAf3N4sWL3ants88+Zs5118e1vqcSBl999ZU55eSTUhbtmgkTzNFHx4uD\noDAYOmyYmXLtFOvetLoHI5jhtttua6Mp3WpetBXg3r16mr/++iu42S1vvPHG5t77FpstttgibptE\nwIRrrjELFtwYEwRxCewX7Ttu3HgnlMLbyvM9X8JA55hKHCAKynMl2RcCEIAABApBAGFQCOqV6Ji5\nrrjnOv9Co44SBj/YyDmNGp1rvrV+57JevXub88+/IHaq6QoDtbyf26iRqVevvnX/2dL2Hiwxt912\nW6xlX+4+99x7X5zoCAqDatU2NBIAbdu2tT0H2zi3HO3vTaLlnXfeMdWrV3cuT3IxevSRR8xdd93l\nk5hWrVub9u07xL5rQT0MgwcPcus233xz23vRwxxxxBHml19+caFbb7xh9VwD6jG47fY7zHp2bEC2\nbMyokU7E9O7bL1tZJs0nkThAFCTFxkYIQAACEKigBBAGFfTCVJTTynXFPdf5F5pjlDDQOamC3cu2\nxMs23mQTV6Hffvvq7nsqYaCQnBp4e9bZZ8dV+rXzq6++Ylq3auXy0Z8HHnzIjTnwK4LCQMe94447\nnTjw2wcNGmjuu/de/9X1Btxsew4kHLx16dzZPPXUEvdV4mTuvPl+k5HoOeecs63//X/curHjxpmG\nDY+LbdfCJZc0M2+9+aZbN2DgIHO2LUe2LN/CQOcdFgen2knsXnrpRePHFOA+lK2rSz4QgAAEIJBr\nAgiDXBOu5PnnuuKe6/wLjT+RMNB5devW1Tz5xBPuFI848kgzadJkt5xKGLhECf7I5eekE0+I9UbM\nnDnLHHDggbHUQWEQNZ+CKrlt264dEH25jfbTxvYoBO3++xebAf37u1XqcXjwoYdjmzWZm8os01iH\nu+6+u9RA6DlzZpupU6a4NKeffrobb+C+ZOFPIYSBTjssDnxREAWeBJ8QgAAEIFAZCCAMKsNVKuA5\n5rrinuv8C4jOHTqZMPj6669NY+tS5AcDDx8x0px88skmXWEgEfCWjST0xhuvm08+/sR88on+f2w+\n++yz2JiA8VdfY4499tgYhqAw8MeLbbQLim50+mmnxlbNnDXbHHDAAbHvWli6dKlp2+ZSt06DlV98\naWls+yjrynPrLbe47xrf0KBhg9g2v6DByHOvv9591QBnDYLOlhVKGOj8w+IAUZCtq0o+EIAABCCQ\nLwIIg3yRrqTHyXXFPdf5Fxp7MmGgc7v77rvM0CFD3GluueWW5nbr2qMK//HHNYyd+jPPPhcX4lPb\nFy5YYGbNmmkUCjSZJRMGUZV+iRSJB2/3WLcitfwHbfny5ebCC853qxRl6KWlL8c2q7dBFeR0TXM7\n3P/Ag+kmT5mukMJAJ+fFgeapIPpQystFAghAAAIQqGAEEAYV7IJUtNPJdcU91/kXmmcqYaDzu6Ld\n5UbhR2Wnnnqa6d6jh2nY4Fj3XX/CwiCYp7bvvvvu5vDDjzA719rZ1Ky5kxk/flzMhz+ZMFBLvQ9J\nqnxkEhrHHH3U6i/2732L7zc77LBD7LsWFLb0/PPPc+vCwqBVyxbmtddec9skdDax4xiS2d///ncz\n/4YbkyXJaFuhhYFO9p233za77LorIUkzunIkhgAEIACBikAAYVARrkIFPodcV9xznX+h0QYr8T5c\naficNIvuBbairUnGZGPGjjM97QRa3oLCQJN6NW7cyPUqqFKueRDCcwkEB/fmWxgMsnMi3Hfffe7U\nL7vsctP2sst8MfLyWRGEQV4KykEgAAEIQAACOSCAMMgB1GLKMtcV91znX+hrkY4w0DkuWrjQxvUf\n6063Zs2aceMEgsLggfvvN/37rw7Feehhh5kpU6bGFfFPO9Nvg2OPMT///LNbn29hMHvWLDNt2upz\n0mRuU6dOizu/XH9BGOSaMPlDAAIQgEAxE0AYFPPVzULZcl1xz3X+WUBQrizSFQYaN9C6VUvz+uuv\nlzpeUBgEo/7UrVvP3LxmoK/f6Yb5882ECdf4rybfwuC9994zF1/UNDb4edTo0eaEE06MnU9wQWMV\n6tWrF1xV7uXRI0eYEvuvd5/8zGNQ7hMmAwhAAAIQgEAFIoAwqEAXoyKeSq4r7rnOv9BM0xUGOs8P\nP/zQNG1yofntt9/iTjsoDDS4NRhOVBOjKeTn+uuvb8OGPmg0eZgmDPv9999dHvkWBjrosKFDYpOg\nKWqR5ls44fgTTM2darqISys/XOkGXX//ww9uduW4wpbzC8KgnADZHQIQgAAEqjQBhEGVvvypC5/r\ninuu809dwtymyEQY6Exmz7auOFPj3YOCwkA9C5e2bhUb4Bs++xYtW5pXXnnFvPbqq25TIYSBZnTu\n1LGDmzU5fH7B74rcc4udPC2bhjDIJk3yggAEIACBqkYAYVDVrniG5c11xT3X+WdY3Kwnz1QY/PHH\nH6bZxReZZcuWxc4lKAy08quvvjKjrMvMkiWrZx/Wui222MKcc+65pkOHjm7mY82ALCuEMNBxNdZB\nImeRHTvh52nQepl6Nxo0aGguuPACs99++69emaW/CIMsgSQbCEAAAhCokgQQBlXysqdf6FxX3HOd\nf/olrXwpJRA++milFQVbmrq29V1Riiqi6Tw/WLHCbLDBBmY7O2/Bdtttl7NQngiDingHcE4QgAAE\nIFBZCCAMKsuVKtB55rrinuv8C4SNwxaIAMKgQOA5LAQgAAEIFAUBhEFRXMbcFSLXFfdc5587MuRc\nEQkgDCriVeGcIAABCECgshBAGFSWK1Wg8/QV91wf/vp5N+T6EOQPAQhAAAIQgAAEIJCEAMIgCRw2\nGYMw4C6AAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAAC\nVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAAC\nEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bAR\nAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMA\nwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAA\nBCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCA\nAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBq\nXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAA\ngaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQg\nAAEIQAACVYMAwqBqXGdKCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYMAwqBqXGdK\nCQEIQAACEIAABCAAgaQEEAZJ8bARAhCAAAQgAAEIQAACVYNAmYXBt19/VTUIUUoIQAACEIAABCAA\nAQhUAQIIgypwkSkiBCAAAQhAAAIQgAAEUhEoszBIlTHbIQABCEAAAhCAAAQgAIHKQwBhUHmuFWcK\nAQhAAAIQgAAEIACBnBFAGOQMLRlDAAIQgAAEIAABCECg8hBAGFSea8WZQgACEIAABCAAAQhAIGcE\nEAY5Q0vGEIAABCAAAQhAAAIQqDwEEAaV51pxphCAAAQgAAEIQAACEMgZAYRBztCSMQQgAAEIQAAC\nEIAABCoPAYRB5blWnCkEIAABCEAAAhCAAARyRgBhkDO0ZAwBCEAAAhCAAAQgAIHKQwBhUHmuFWcK\nAQhAAAIQgAAEIACBnBFAGOQMLRlDAAIQgAAEIAABCECg8hBAGFSea8WZQgACEIAABCAAAQhAIGcE\nEAY5Q0vGEIAABCAAAQhAAAIQqDwEEAaV51pxphCAAAQgAAEIQAACEMgZAYRBztCSMQQgAAEIQAAC\nEIAABCoPAYRB5blWnCkEIAABCEAAAhCAAARyRgBhkDO0ZAwBCEAAAhCAAAQgAIHKQwBhUHmuFWcK\nAQhAAAIQgAAEIACBnBFAGOQMLRlDAAIQgAAEIAABCECg8hBAGFSea8WZQgACEIAABCAAAQhAIGcE\nEAY5Q0vGEIAABCAAAQhAAAIQqDwEEAaV51pxphCAAAQgAAEIQAACEMgZAYRBztCSMQQgAAEIQAAC\nEIAABCoPAYRB5blWnCkEIAABCEAAAhCAAARyRgBhkDO0xZnxypUfmqUvLTXffPN1uQu44447mhNP\nOslUq7ZhufMiAwhAAAIQgAAEIACB8hFAGJSPX5Xbe9HCBebHH3/MWrm33nobc8aZZyAOskaUjCAA\nAQhAAAIQgEDZCCAMysatyu41c8Z0V/a2l11eLgY+H2UicdCoceNy5cfOEIAABCAAAQhAAALlI4Aw\nKB+/Kre3r9BnSxhsvfXW1i3pG1N/t93Mscc2qHI8KTAEIAABCEAAAhCoKAQQBhXlSlSS88i2MGjR\nsqVZuGCB+e233xAHleQe4DQhAAEIQAACEChOAgiD4ryuOStVtoWBeh40kPnee+5BHOTsqpExBCAA\nAQhAAAIQSE0AYZCaESkCBHIhDJR9UBwcdvjhZq+99g4clUUIQAACEIAABCAAgVwTQBjkmnCR5Z8r\nYSBMCoX68EMPOWIab6BxBxgEKhOB8ePGmRUfrDBnn322OfHEkyrTqXOuEIAABCAAAYMw4CbIiEAu\nhYFOZNl775knn3zCnZPmOKhdu05G51dRE//yyy/m4YcfNq+88rJ5/bXXzJZbbWX223c/c2yDBrZ3\nZK+KetqcV4YEWrVsYV6z17djp06mRYuWGe5NcghAAAIQgEBhCSAMCsu/0h0928Lg9DPONJroLGhe\nHGy4YTXTvEWr4KZKufzTTz+ZDu2vMG+88Uap819//fXNyFGjTMOGx5XaVtVXlJSUmD/++MNssMEG\nlQYFwqDSXCpOFAIQgAAEIgggDCKgsCoxgWwJg4cfetC6Dq1MfKA1W8obFjXlAXKc4JeffzZt27Yx\n77zzjtnNukZddnk7c9CBB5oPPvzA3HjDjeaRRx426623npkwcZI53I6twFYTGG3F0hNPPG5GjR5t\n9rU9K5XFEAaV5UpxnhCAAAQgEEUAYRBFhXUJCWRLGPz22//Mk088YT777DMXjSjRASu7MLj1llvM\nqFEj7SRuW5sbFyw02223Xayoag2XaHjt1VfNgQcdZGbMmBnbVpUX1FNw4AH7OwRzrrsOYVCVbwbK\nDgEIQAACeSWAMMgr7sp/sGwJg1Qk8nWcVOdR3u0XX9TU9Rb07dfPNGpUenZnuRe1aH6JWWeddcx9\ni+831atXL+8hK/3+CINKfwkpAAQgAAEIVFICCINKeuEKddr5qrDn6zi55Lh8+XJz4QXnu0Pc/8CD\nZvvtty91uL/++sscf1xD8/333+dkwKpcmd5++21Tr3598/e//73U8bXiiy++MB9Zt67adepEnmN4\nJ53zV199ZT799FM3BqBWrVpuP4mbZPbnn3+aTz75xPUSbW0HX++y666R4wfKIgz+97//mffswPU/\n//zD1KtX32y66abJTiVum8rz0UcfGX3uvPPOkecUt4P98uuvv7qB8uvb8Q9yEdNYEVkmrkQakP7h\nhx8ajUHZZZddzLbbbuvy4A8EIAABCECgUAQQBoUiX0mPm68Ke76Ok8vLsGjhQjNu3FhbUa1nbrr5\nloSH6t2rlxtrcPoZZ5ghQ4YmTJdqwyEHH+Qq6tNnzDA77LCjGTigv3nzzTdtZflPs+6665oDDjjQ\ndOna1VVkldeNN95gbr/tNvPxxx/Hst59993tYOjRpmbNmrF1fuHf//63ufnmm8ztt99ufrBCJmi7\n2kp+/wEDzd57l55/Qse/Yf58s2jRQvP111/HdtOgYomDOXOuMxtttJG57dZbzciRI2LbwwsaayDX\noqB9+ukqM2TwYPOqdcfScbztscceZuiwq2xUq9p+VewzyGmbbbY1vXr2MCtWrHDbx9pwo8kGgi9b\ntswMHTLYiRAJCdmGG25oGh53nBk0aLC5TK5hKaISaVzJlGuvNatWrTISQd42t8KtaZOmplXr1m7c\niV/PJwQgAAEIQCBfBBAG+SJdJMfJV4U9X8fJ5WWZPHmSmXv99aZBg4Zm3PjxCQ81YcI1ruKswceT\nr52SMF2qDb7CO8hWlGdacaAK695772Mr4/82L730khvLUctWlBctusncc/fdbuxD3br1zJ577mE+\n//xzl0aV62222cbce99iU61atbhD9uvbxzz44INufR3bu1C3bl2b5+/m+Reed0JB6W+7/Q5To0aN\n2H6q+A6wAuWB++93ld1DDzvM7GDdpSQQVMnWGJMnlzxlNttsMzf79aRJE11l+bvvvnN5aL0EhGzP\nPfcy10yY4Jb1Z8mSJWZA/37mZ9srIhesfffd1+0rkfDll186sTFhwkQ3fiO2k13wnKZOnWamTLnW\nvPXWW67HQ8Jn9JgxCYWByjBs2FCj3glV4ve04mPbbbez5XjPuYsdddTRRnm8++47kb0///3vf01/\n61KmQdUy9U7stts/zHrrr2eWWxZenOyx555moh2MvuWWW7p0/IEABCAAAQjkjYB9cWMQSJvAjOnT\nSvQ/15av4+SyHAMHDijZf799S2wLc9LDXDdnjkvXtEmTpOlSbTz4oANdPoceckjJmDGjS2wlP7aL\ndScqOerII9z2Npe2LrGDe0umTZsa266F559/3q3XOd9006K4bfrSr1/fkhHDryr5/j//idtm3YpK\nTj3lZJe3rfjGbbPzNrj1tjJeYivgcdt0fk88/niJrWjHrbct8W4fnYf2jzIrLGLlUVmDeVg3n5Ke\nPXu4PC44/7w4DsrLc7qyU6eSxo3OLbHuTe4QP/zwQ6my+WN/8cXnJeKqc+rWtWuJFSN+k/tUOY5c\nw1dprr/uurjt+mKFotv/iMMPK7n3nntKbX/ssUdLjj7qSJfGCpBS21kBAQhAAAIQyDUBtbBhEEib\nQL4q7Pk6TtoFL0PC9ldc4Sp5tkcg6d633nqrS3fySScmTZdqo6/wnnP2WaUqw9pX56FKq/5f2rpV\nZHadOnV021X5DZsqzonshhvmu/3OPuvMuCRzZs926zMRPekIAy+6rriiXYnSh82O2Sg59pij3bFV\n4Q6a5ySxYsdXBDclXB40aKDLy44ZiTyedrz99ttcmihhYMcSxATJ4sX3JTzO/YsXuzwk3OyYiYTp\n2AABCEAAAhDIBQGEQS6oFnGe+aqw5+s4ubxUFzVt4ip5s2bOTHoYtR6rMnnC8cclTZdqo6/wRrVW\na99nnn46VnENV5Z93r73Queeif3ruedc3qpsB3sq7JgEt/7IIw4vse49aWWZShjYQbslB+y/n8t3\n6dKlCfPs2rWLS3PttZPj0nhO1g0pbn2iLzqeKuq6Ro888kiiZK7chx26ulchfA2si5Tb/7zzGsfx\nCWcmdhJXOlaq+ya8L98hAAEIQAAC5SXAGIO8OW0Vx4Hy5fufr+Pk8qq0u/wy88ILL5iLmzUzXbp0\nTXgoP0j5H//4p1lgByyX1bzv/OgxY83xxx9fKhtF7Wna5EK3/o477jQabxC2u+++yw6uHeJ87hVJ\nKcp+++03N4vzhx98YD5Z9YlZZSMNfWCX/SDmZ5/7l/nb3/7mdv3yyy9M48aNjaIjbb99ddOuXTtz\n0sknlxq/EDyOfaglncfgvXffNU2bNnEDqocOHeZ89IP7+2UruMxzzz1nTjrpJDNi5Ci/OjbGoFfv\n3ub88y+IrU+0EIwu9cQTT7rxBYnS6rx0fh07djItWraMJeverZsbW3DBBReannaweTKzLlvmwQce\nMKeddpobQJ0sLdsgAAEIQAAC2SSAMMgmzSqQV74q7Pk6Ti4vmaICLV682Jxx5plm8OAhCQ81ffo0\nY1uHjQavTpg4MWG6VBu8MFBUooMOOrhUcoXGtD71bv1jjz9htthii1JpHn74IdPHVpgVOvPBhx6O\n264BveNtlKWnn37GDjr+X9w2DRD+/fff3bqgMNAKiSNVdr/95hu3XWFTz23UyDSxEXg08VvYUgkD\nDYDWQOh0bb/99jez58yJJfecNJD56KOPia1PtPD444+ZHt27m4032cSVPVE6rU8UrvS8xo2ceOpm\n82na9KJkWbgB0bbnxuy1115m7rz5SdOyEQIQgAAEIJBNAgiDbNKsAnnlq8Ker+Pk8pJNspX8efPm\nuspnMJpO+JijR40yt9xyszn33EamX//+4c1pf/cV3lwIA811oDkZfvzxR9vav6E5/IjDnZCpXbuW\n2WmnnV0UoGYXr67whoWBCqD9FBpV4U41B4JMcw306dvPnGx7EIKWShioJ2Dw4EHuPNQbkcoUJenC\nJk1iyVJxiiVcs3DHHbeb4Vdd5aI1PfTwI+HNcd+bX3KJDRH7RqmoRKedeoqbLyKdXoppU6ea2bNn\nmf3339/Mmr1W0MQdiC8QgAAEIACBXBAory8S+1ctAvny/c/XcXJ59RYtWuR8xTWoOGqArD+2nR3Z\npZs3d65fVaZP7zv/wgvPR+5v3X3cceS/bsOBRqZ56KEHXZqTTjwhbnuvnj3d+kuaNSv5+aef4rbp\ny8svL43lrahAiUw+9I8++mjJOeec7dIfdOABJW+88Xpc8lRjDHykI40zCEcHissowZdUnMK7Pffc\ns+5cdbxg9KNwOn0/8YTjXdrwGAMNkhb3cWPHRu0Wt06RnZT2qmHD4tbzBQIQgAAEIJBrAgw+zjXh\nIss/XxX2fB0nl5fHxuiPDVq1E41FHsrGvXcDaTW4Nd3BuZEZ2ZWpKrzlEQYSN6qs2jEIkYcPRuRJ\nJgz8zopwdMrJq0OchivLqYSBmOlc9D9ROFN/nKjPVJzC+9ixE7Hj2TkSwptj34PnFRYGCqmq81V0\npmQiUcLJiyY7AV0sbxYgAAEIQAAC+SCAMMgH5SI6Rr4q7Pk6Tq4vjQ9ZmiguvSLPqMLYtUvncp9K\nqgpveYSBj+GvsKRhU2VWFV5fWU9HGCgPlVn7KPRo2Hx0nyeffDK8yX33EZ/atm0Tud2v1LmFLRWn\ncHrlcfppp7pz7dihfXhz7PvQoUNiDMLCwM6GHIukZMdIxPYJLzzwwAMuD805IaGBQQACEIAABPJJ\nAGGQT9pFcKx8VdjzdZxcXxJNfOUrzArdGbQlS550PQpyUdHkYuW1VBXe8ggDXxE/4/TTSjRHgDe5\n1kj0WL/9WDmDwmDBghtL5J4UbiVftWpVrIfjzjvv9NnFPhude47LT3lHVe5fevHF2PGUJuxSpH3u\nuuvOEk1iFrZknO68446SPr17lSxfvixut/vuuzd2vKvHj487Jx1LAu/QQw4uOfbYY1y6sDBQZpro\nTveCJkJTfmHTvXLM0Ue5NOKGQQACEIAABPJNgMHHuRi4UcR55mtQcL6Ok49LNXvWLGNnGXaH2nHH\nHc0+++5rltnQoStWrHAhNwcOHOQiF5X3XFINqi1PVKJHH3nE9OrV053i+uuvbw455BCz8cabmNdf\nf81YcWC6dO1mBg0c4LYHBx+PGT3aDTjefvvtTd26dc22221nli9bZhQ69Y8//jB77723mTptutlo\no43iij9jxnQz00ZXklWvXt3885+7m9//+N1MnDgpls5W0I2tQLvvirCkNNV3qG4+XbXKKMSoHUdh\n1/3T3LggPgRsIk52NmVzysknGStizBFHHmkmTZocO5bWdenS2di5INw6ndOeNmrQeuuuawcbv+kG\nFisk6kJ7PrZ3oNTgY+1kBZXp3q2refnll10etWrVMrvt9g8XbnWZZbLi/ffd+jPPPMv0HzDArLfe\neu47fyAAAQhAAAL5IoAwyBfpIjlOvirs+TpOvi6L5iqwPuOuAqljrrPOOmbXXeuaNm3amONPOCEr\np5GowuszL48wUB632ahCU66dbOz4AJflurZSXK9+fSsIBhk797Cxg6jd+qAweOihh8zkSRPN559/\n7rb5P5tttpk566yzTZu2bV10Ir/ef9peBxd5SILE22GHHW6unTLFf3WfS5YsMePGjjF2PEfc+mrV\nqpnTTz/DXNK8uY2atFPctkScbMu/OevMM9y5tm59qbmiffu4/WyrjZkzZ7axg8SNnfTMbRMDCR6l\n13VMFK7UZySBsWjRQjPX5uHDt2qb7oedrVDo3LlzWiFUfX58QgACEIAABLJJAGGQTZpVIK98Vdjz\ndZx8XzJVYD/+6COz++67J50oK9/nle7x1DuwcuVK892335rd99jDbL755il3VYVaZf7q31/Z+Q9+\ndz0Aqqyr8p7KNHeCJlDbwfa0qLclkf1gW+PVS6Bj7bDjDm4yNfVsZGoqnyZqq1evXsJdVblXGp2b\nrqNETlnsW8twxYr3XW/JLrvsantgNi5LNuwDAQhAAAIQyBoBhEHWUFaNjPJVYc/XcarGVaOUEIAA\nBCAAAQhAIDUBhEFqRqQIEMhXhT1fxwkUrcIsjrWuMenaXnvuZU4+5ZR0k5MOAhCAAAQgAAEIJCSA\nMEiIhg1RBPJVYc/XcaLKWOh1NkpR2qeggaqDBg9OOz0JIQABCEAAAhCAQCICCINEZFgfSSBfFfZ8\nHSeykAVe+dNPP6V9BhtssIHZcMMN005PQghAAAIQgAAEIJCIAMIgERnWRxLIV4U9X8eJLCQrIQAB\nCEAAAhCAQBUkgDCoghe9PEVetHCB+fHHH8uTRdr7br311qZR4/PSTk9CCEAAAhCAAAQgAIGyE0AY\nlJ1dldxz5coPzdKXXjLffPNNTsuvEJCHHX64qV27Tk6PQ+YQgAAEIAABCEAAAqsJIAy4EyAAAQhA\nAAIQgAAEIAABgzDgJoAABCAAAQhAAAIQgAAEEAbcAxCAAAQgAAEIQAACEICAQRhwE0AAAhCAAAQg\nAAEIQAACCAPuAQhAAAIQgAAEIAABCEDAEmCMAbcBBCAAAQhAAAIQgAAEIIAw4B6AAAQgAAEIQAAC\nEIAABOgx4B6AAAQgAAEIQAACEIAABCwBXIm4DSAAAQhAAAIQgAAEIAABhAH3AAQgAAEIQAACEIAA\nBCBAjwH3AAQgAAEIQAACEIAABCBgCeBKxG0AAQhAAAIQgAAEIAABCCAMuAcgAAEIQAACEIAABCAA\nAXoMuAcgAAEIQAACEIAABCAAAUsAVyJuAwhAAAIQgAAEIAABCEAAYcA9AAEIQAACEIAABCAAAQjQ\nY8A9AAEIQAACEIAABCAAAQhYArgScRtAAAIQgAAEIAABCEAAAggD7gEIQAACEIAABCAAAQhAgB4D\n7gEIQAACEIAABCAAAQhAwBLAlYjbAAIQgAAEIAABCEAAAhBAGHAPQAACEIAABCAAAQhAAAL0GHAP\nQAACEIAABCAAAQhAAAKWAK5E3AYQgAAEIAABCEAAAhCAQNmFwU8//gA+CEAAAhCAAAQgAAEIQKBI\nCJS5xwBhUCR3AMWAAAQgAAEIQAACEICAJVBmYQA9CEAAAhCAAAQgAAEIQKB4CCAMiudaUhIIQAAC\nEIAABCAAAQiUmQDCoMzo2BECEIAABCAAAQhAAALFQ+D/AQAA//8LjYRpAABAAElEQVTt3Qe4E8Xa\nwPFXERBULIgiKIIoSLGgUm2IBQtgoQgoCEoRsNBElKogSLNQlGK7SlFEvNKLAooKckXhAgJKFUFE\n8UqxYck37+DmS3KSc9J2T5Lz3+fBk+zOzsz+Zp97583OzB7hM5uwIYAAAggggAACCCCAQJ4WOILA\nIE+3PxePAAIIIIAAAggggIAVIDDgRkAAAQQQQAABBBBAAAEhMOAmQAABBBBAAAEEEEAAAQID7gEE\nEEAAAQQQQAABBBAQAgNuAgQQQAABBBBAAAEEECAw4B5AAAEEEEAAAQQQQAABI8AcA24DBBBAAAEE\nEEAAAQQQIDDgHkAAAQQQQAABBBBAAAGeGHAPIIAAAggggAACCCCAgBFgKBG3AQIIIIAAAggggAAC\nCBAYcA8ggAACCCCAAAIIIIAATwy4BxBAAAEEEEAAAQQQQMAIMJSI2wABBBBAAAEEEEAAAQQIDLgH\nEEAAAQQQQAABBBBAgCcG3AMIIIAAAggggAACCCBgBBhKxG2AAAIIIIAAAggggAACBAbcAwgggAAC\nCCCAAAIIIMATA+4BBBBAAAEEEEAAAQQQMAIMJeI2QAABBBBAAAEEEEAAAQID7gEEEEAAAQQQQAAB\nBBDgiQH3QIwC27ZtlZWfrpS9e3+I8cysyUuUKCHX1a0rBQoUzHqQPQgggAACCCCAAAKeCjCUyFPu\n9C9syuRJcuDAgaRdSNGiJ0v9BvUJDpImSkYIIIAAAggggEB8AgQG8bnl2bPGjxtrr71d+3sTMnDy\n0Uw0OGjYqFFC+XEyAggggAACCCCAQGICBAaJ+eW5s50OfbICg6JFi5phSXulXPnyUrv2VXnOkwtG\nAAEEEEAAAQRSRYDAIFVaIk3qkezAoFXr1jJ50iQ5dOgQwUGa3ANUEwEEEEAAAQQyU4DAIDPb1bWr\nSnZgoE8edCLzzBkzCA5cazUyRgABBBBAAAEEchYgMMjZiBQBAm4EBpp9YHBQs1YtOe+88wNK5SMC\nCCCAAAIIIICA2wIEBm4LZ1j+bgUGyqRLoS6YP9+K6XwDnXeQydvvv/8uBQsmb6nWB+6/T/786y95\n8MHOUj4X7Pbs2SP/+c8KufzyK6RIkSJBTZdo3WbMeEfmzZsnlSpVkk6d7gvK240vGzasl5EjR0r+\n/Pnl2WdHulFEyuU5Yvhw2bxls9xyyy1y3XV1U65+VAgBBBBAwH0BAgP3jTOqBDcDA4X6cuNGWbJk\nsTXTdxyULl0mo/z0Yn799Vd5cvAgWb58ucxfsDBp11e9WlX5888/Zey4cVK1arWk5RttRk0aN5LN\nmzebSeS1ZcRTTwedlmjdxowZLS+9+KLUMk+TRo0eE5S3G18+MW3TsWMHu4zuMvM5L2x3t24lq1ev\nlvsfeEBatWqdFy6Za0QAAQQQCBEgMAgB4Wv2AskODOrVbyD6orPAzQkOChYsIHe1ujvwUFp/9vl8\n8u67C+Vp02n+7rvdcvLJJ2dWYNCksWzetEmuuqqODB8xIqitCAyCOOx8mgIFCgTvzOVvBAa53AAU\njwACCKSAAIFBCjRCOlUhWYHBgvnzzNChbTleeqLLouZYgAcJfv75Z3nvvXdl4sSJtuPsFJlpgYEu\nO7ty5ady2aWXSeFjjnEu0/4lMDjMsfLTT2X8hPGS/6j8MnqM+08+ghohhy8EBjkAcRgBBBDIAwIE\nBnmgkZN5ickKDA4d+l2WLF4su3btsr+eRqpjJgQGDerXl507v7GXePrpp9v3NUyc+FrGPTGI1Ia6\nn8DgsM7Ysc/LhPHjpVq1avL82HHZkXl+jMDAc3IKRAABBFJOgMAg5ZoktSuUrMAgp6v0qpyc6pGM\n4zfdeIPoMKI77rxTGjduYudQPNKzpxQrVkzmzV+QjCJsHol2vpNWkTAZJVq3TJljQGAQ5uZgFwII\nIIBAyggQGKRMU6RHRbzqsHtVjhfq69atkwoVKsiRRx5pi1uwYL54GRhs2bJFfvzn7dKhqwV5cf1a\nRrSBwV9mVSWt776ffpKKZgWiwoUL2yq6GRjo05wdX++Qc8qVE30Tt27RTj7WYWI7d+6U782KTDo0\nrNSZZ0qhQoVsHuH+E2tg8OOPP5qnajtl3779cnrJklLSPHE66qijwmUd9T6d/K7zeI4yKy7p6lVO\nfrE8Mfjll19k69atcvDgQTnrrLNskBt1BUiIAAIIIJCyAgQGKds0qVkxrzrsXpWTG8peBAYXXHCh\nDB40SD78cKlo59LZypnO78AnBknZsmWdXf6/re5qKWvWrJEuXbvKnXe28O8P/DB9+lvyxMCBUqZM\nGZn21vTAQ3YVH+1Qt2nbVjp06Bh0LKfAYN++fTLg8cflo48+MkPLfrfnaiCly5MOGTpUpk2bltRV\nif7++2/RYGP6W2/J/v37/XUtWfJ06d2nj/jM8UirEunTn6VLP7BzRnTOQOCWL18+adGipbRr3z5o\nKdprr7k6qB0Cz9HPOqxIhxfp9ttvv9kX/k2ZMlm2b99u9zn/KXL88dK1S1ep36CBsyvqv19++aU8\n/lh/2WiCAr1+3XS53DpXXy39+vWX9u3a5rgq0cKFC2TM6NHyzTff2KdgTuFar+bNmsvd99wjasCG\nAAIIIJCeAgQG6dluuVZrrzrsXpWTG5BuBwYjR46SKVOmyKef/kcqVqwoZcwvuju/2Wk6/f+1nU79\nRXv48BFSo2bNoMvPrcBg44YN0rVrF9m9e7ddHrRCxQo28NDO53/N8pnFip0iF1xwgcyZMzspy5Xu\nN0FI9+7dzETplfYpjgZJ55onOvt+2mc6xqus0e1Nm8qr//pX2OVKtbN+2623WDt9SnDOOeWk+GnF\nZdNXX9nASg/cettt0rt3H79v40YN5SfzFER/adeOv/5KH/j0ZuiwYVKlykU2vRN8aWBU0jwl0PyP\nOfYYWfX557Jjxw6b5gkT3F1/ww3+/HP6MHfOHBkw4HHRd2doJ76yCbjU9csvN8r69evtuye+//57\n0fc3hFuuVOvcu1cvWbx4kS2qVKlS5mnDuZLvqHzylQk4dJla3SpVrmzf+3DiiSfa7/wHAQQQQCDN\nBMyvX2wIRC0wbuzzPv3n9uZVOW5fR7j858+f57uoyoW+utddG+5w3PuqVb3E5lu/3k0+03H1ffXV\nl0F5mQ6tz3RQbZpbb7nZZ955EHT8rpYt7LHXXns1aH/gl7femmbTNLzt1sDd9nOHDvfaY889NybL\nMaduK1Z8EnTMDB3yNW7cyJ7XqOFtPq1j4LZp0yaflqVe+q9Tx46Bh+P6PHjwIJvXFZdf5vtw6dKg\nPMwQJl/XLp395dWoXi3ouH4xq2n5GtSv51v6wQdZjk2YMN6ee8nFF9l0oQmef/45e/ze9u1CD/m/\nq3H7du18ZkiVf59+MJ163wMP3G/Pv/GG681Djb+Djkf6snv3t74a1avb87p17eozw5+Cki5etMh3\n2WWX2uNq/PJLLwUd1y+jRo20xy+tVdM3c8aMLMfNqls+9dTzTQCS5Tg7EEAAAQTSQ0AfB7MhELWA\nVx12r8qJ+sKTmNDtwEA7s+aX5bA11o62dlq1AxfawcuNwEDroHXRjqt5c3L4On/1lc8JLBINDL7+\n+mt/XtqZDbeZX8dtx/9wvbIGBnpcO+nhtkOHDvmuqn2lvSbzK32WJNEEBmZoU5bznB3r139h89a6\nRfJy0jp/+/Xra89penuTiMGEE/BpvqGBgZlL4DebPXuWk22Wv3Nmz7bl6P1lhitlOc4OBBBAAIHU\nFyAwSP02SqkaetVh96qc3MB1OzAwcwCyvSznV+f+/foFpcuNwKBli8NPKZ4cPDioLqFfNCDQTmui\ngcHIZ5+1+ehTiux+cdfOcaTAILRuod/NkCx7rj49CN2iCQxCzwn8rgHJxRdVsfl//vlngYfCfjZD\nl/yB4MKFC8Om0Z365KZmjcNPFUIDg5Ej/99M00Xa9NgtNzc4fO3js157pPPYjwACCCCQOgIEBqnT\nFmlRE6867F6VkxvobgcGb0+fnu1lOZ3jtm3uCUqXG4FB7SuvsB3JSL/eOxUcMXy4TZdoYKBDabTD\nP3TIk07WYf8uWbLEpgs3lCjwBLMikU/b84UXJvg00Lrn7rt9OtxGy3jmmacDk9rPsQQGGrhsWL/e\nN+Odd3xmwq/vkZ4P++68o7k/MAgdBpWlMLPDTDi2ddH66DCp7LZmzZratKGBgWM25MnszTTvRx99\nxObRp3ev7IriGAIIIIBAigoQGKRow6RqtbzqsHtVTm44ux0YLF+2LNvLMhOTbedNx8kHbl4HBtpR\n1Q6r/tMhMtlto0ePsunu65TYHIMmjRvbfLKbR6H1UEOtlw5xCre9886/ffXr1bNpnGvQv/prftVL\nLrb74w0MdKiSnusMSQrM3xlSpfuiCQw04NK0Oocgp611q7ts2pdfDp5joHM/NI9JkybmlIXPaSe9\nl9gQQAABBNJPgMAg/dosV2vsVYfdq3JyA9PtwCB0gm/oNerkYO3o6ZCXwM3rwEAn8Wo99J9+zm5z\nnnIkGhhcd+01tjwdU5/dZpZNtenCBQbO0wutt07i1s7w++8v8ZmVeezcgwcfeMCeG09goBPCW9x5\nhz1fg4zWrVv5Xnv1Vd/y5ct9ZpUmO+Tnsktr2ePRBAbO3AG97pw2Z1hXaGCgE531Wt944/WcsvA9\nN+bwvdXmnrtzTEsCBBBAAIHUEyAwSL02SekaedVh96qc3MB2OzDQYTDZbX379rEdPbP8ZFAy7cxp\nB9C8hCtof+AX7TRqmmSsShQ4Xn7Zxx8HFpPl86OP9LTlJjqUyAl+dJWd7DanQx06lChw8vbCBQvC\nZqErCqlRPIHBm1On2nNrmwnM28yk39BNx/E7Tw2iCQw+/vhwgKNBRqQJ004ZTtAUOpTIvM/B1mn4\nsGFO0oh/9Z7Sax84YEDENBxAAAEEEEhdAQKD1G2blKyZVx12r8rJDWS3A4MXX3gh4mX98ccfvhuu\nr2s7b+PHjQtK54wPNy/BCtof+MVZ4UaXQw3d4lmu9Pq619m6ZFdnHWt/qylPO5yJBga9ej1q89G6\nZrdpx1bLCw0MdP6G7tdf0SNtTgc7nsDAqV/fPr3DZh/4lCWawEBXYdL66r9Vq1aFzVN3mncY+NOF\nBgZDhw6xx5o3a5bthG0NWpx2mjjxtYhlcQABBBBAIHUFCAxSt21SsmZeddi9Kic3kN0ODLTTGrpW\nvXOdOjbe6fCaF4o5u+1fZ616DRw0gAjdfvjhB58zjCVZgYHzC/PVda7y6Qo64TZnGUytd6KBwdtv\nv+3vAK9dsyZccWbIzg4bEDhOgYmcJyZ1rqod9hd4fSeAnqf/wgUGr7zysj2mE33DbTpUSs/t/OCD\n4Q77hg0b6s8/msBAO+v1brrRnnP/fZ3C5qk7H3/8MX++oYHB6tWr/ROe582bFzGPuXPn2jwuN/MZ\nNNBgQwABBBBIPwECg/Rrs1ytsVcddq/KyQ1MtwMD7Vjef/99vv/9739Bl7do0Xu+WjVr2M5buGEh\n69at83cOn376KTue3clg7969Pl3FyHlRVrICA+2EO0Nj9KVfoXXWYVFXXnG575prrrZ1SzQw0DH8\nOi9AjbTDrKv+BG66Zr++BM4pL/SJwQcfvO83mjJ5cuCpPvNmYt+1pp7Vq1W1acIFBuat1/aYpgn3\nromnnhphj+u7AEInZOvwJvV33kMRGhjo0wxduSj0xXazZs301/mpESOC2lUDhwlmaVG9Th2+pC6h\ngYFepD5F0mM6iVnzC900INJ20jTRTFIOPZ/vCCCAAAKpIXCEViPNXtZMdXNRYPy4sbb0du3vdbUW\nXpXj6kVEyNx0DuWRnj2lWLFiMm/+ggipYt9tOptiOr7SqdN9Yn6Zlnz58skFF1woJ5x4gnzxxRey\nZfNm/SFAqlatJkOHDZMiRYpkKaRb1y5iOuN2f5kyZaRS5cpyYP9++XzVKil+6qlS9/rrZdTIkaLH\npr01Peh8MxZdPlm+XNq0bSsdOnQMOubUbey4cbb8wINa19GjRtm6HXfccXLeeefJyScXk41fbpSN\nGzZI8+Z3SMGjC4rpsEqtWrVk1OgxgafH/HnFihWi12meUEj+/PmlYqVKUqZ0aTHDbmTt2nVSoWIF\nadGihXTv1k0KFCgoy8w1OZv6tmxxp5gXeNldJUqUkIsvuUS+2fGNrF69Sho2aiTffvutmE67tLzr\nLnnwwc7OqfaveXmZmNWg5MCBA7Z9atSoIT/s3SudO3eRatWqiVn+VMyLyGzd9ISKFSvKWWXLyvr1\n62Xrli0y8IlBMnDA4/b4yJGj5NLLLrP5mqc5Yp70iBl2ZffpMWfTfV26dLZ10n3FixeXysY435FH\nmutdK+bJkQwa/KRMnjTRXMNquf+BB6RVq9bO6fbvvn37jEdX+eyzz+z3M888U8qXP1fyHZVPzJKo\nsnnTJru/QYObpXefPvbagjLgCwIIIIBAWggQGKRFM6VOJb3qsHtVTm7Iuh0YaOf76KMLSf9+fcWM\nSfdfogYCtzVsaAOHI02nMNxm3twrzz7ztEydOtV2MjWNdp6rVKkiT5hO6ZL3l4h5gVpSAwMtY+nS\nD2y+ZgiKfrXbaaedJjfdVE86dOwoY8aMlpdefDEpgYFmvt249O7dywZMh0sTKXL88VKjeg3pYzq2\na9asEQ10QgMDTasd/8GDnhCzcpFzqj23fr360qVrV+nSubO9nnCBgZ6gQUP//v3EPB2x52sAN37C\nBLnwwir2+8qVK2XQEwOD2k4DkPb3dpB69eqJGaqTJTAwv/zLzQ3q27rdc08b6dipk83L+Y8GhC++\n+IL865VX/EGH3gNnn322aPprrr1W7m7dKmJgoPlogDFlymQTdL4iP5pgxtmOOOIIKWUChc7muq+4\n4kpnN38RQAABBNJQgMAgDRstN6vsVYfdq3Jy09KLsn/88Uf5yvyie/oZZ0jJkiWjLtKspS9bzC/U\nv/76q1Q2Tw0KFiwY9bmJJNyzZ4/9Zbx0mdJy6qnFE8kqqnP1l/svza//J5xwgv1lXju50W7fffed\nbN++3Z57zjnnSCznmhWCxKw6JL+bQKxcuXImkDs6qFjthJuhRrJr104pXbqMaJCU06Z56lMPrUuk\nTfPVNFp3fRqhT2ji2fS+2rx5kxQqVEjOOqusFC5cOJ5sOAcBBBBAIMUECAxSrEFSvTpeddi9KifV\nvakfAggggAACCCDglQCBgVfSGVKOVx12r8pJxWYxK89EXa3zKp8n199wQ9TpMykhTpnUmlwLAggg\ngEAqCBAYpEIrpFEdvOqwe1VOKtKbl1FFXS2d7Nmvf/+o02dSQpwyqTW5FgQQQACBVBAgMEiFVkij\nOnjVYfeqnFSkP3jwYNTV0onBXo3/j7pSHiXEySNoikEAAQQQyDMCBAZ5pqmTc6Feddi9Kic5KuSC\nAAIIIIAAAgikvwCBQfq3oadXMGXyJLsGuxeFFi1a1KwL39iLoigDAQQQQAABBBDI8wIEBnn+FogN\nYNu2rbLy00/FvAk3thNjTK3LKNY0L7PSpRrZEEAAAQQQQAABBNwXIDBw35gSEEAAAQQQQAABBBBI\neQECg5RvIiqIAAIIIIAAAggggID7AgQG7htTAgIIIIAAAggggAACKS9AYJDyTUQFEUAAAQQQQAAB\nBBBwX4DAwH1jSkAAAQQQQAABBBBAIOUFCAxSvomoIAIIIIAAAggggAAC7gsQGLhvTAkIIIAAAggg\ngAACCKS8AIFByjcRFUQAAQQQQAABBBBAwH0BAgP3jSkBAQQQQAABBBBAAIGUFyAwSPkmooIIIIAA\nAggggAACCLgvQGDgvjElIIAAAggggAACCCCQ8gIEBinfRFQQAQQQQAABBBBAAAH3BQgM3DemBAQQ\nQAABBBBAAAEEUl6AwCDlm4gKIoAAAggggAACCCDgvgCBgfvGlIAAAggggAACCCCAQMoLEBikfBNR\nQQQQQAABBBBAAAEE3BcgMHDfmBIQQAABBBBAAAEEEEh5AQKDlG8iKogAAggggAACCCCAgPsCBAbu\nG1MCAggggAACCCCAAAIpL0BgkPJNRAURQAABBBBAAAEEEHBfgMDAfWNKQAABBBBAAAEEEEAg5QUI\nDFK+iaggAggggAACCCCAAALuCxAYuG9MCQgggAACCCCAAAIIpLwAgUHKNxEVRAABBBBAAAEEEEDA\nfYG4A4ODB/a7XztKQAABBBBAAAEEEEAAAU8ECAw8YaYQBBBAAAEEEEAAAQRSWyDuwCC1L4vaIYAA\nAggggAACCCCAQCwCBAaxaJEWAQQQQAABBBBAAIEMFSAwyNCG5bIQQAABBBBAAAEEEIhFgMAgFi3S\nIoAAAggggAACCCCQoQIEBhnasFwWAggggAACCCCAAAKxCBAYxKJFWgQQQAABBBBAAAEEMlSAwCBD\nG5bLQgABBBBAAAEEEEAgFgECg1i0SIsAAggggAACCCCAQIYKEBhkaMNyWQgggAACCCCAAAIIxCJA\nYBCLFmkRQAABBBBAAAEEEMhQAQKDDG1YLgsBBBBAAAEEEEAAgVgECAxi0SItAggggAACCCCAAAIZ\nKkBgkKENy2UhgAACCCCAAAIIIBCLAIFBLFqkRQABBBBAAAEEEEAgQwUIDDK0YbksBBBAAAEEEEAA\nAQRiESAwiEWLtAgggAACCCCAAAIIZKgAgUGGNiyXhQACCCCAAAIIIIBALAIEBrFokRYBBBBAAAEE\nEEAAgQwVIDDI0IblshBAAAEEEEAAAQQQiEWAwCAWLdIigAACCCCAAAIIIJChAgQGGdqwXBYCCCCA\nAAIIIIAAArEIEBjEokVaBBBAAAEEEEAAAQQyVIDAIEMblstCAAEEEEAAAQQQQCAWAQKDWLRIiwAC\nCCCAAAIIIIBAhgoQGGRow7p1Wdu2bZWVn66UvXt/SLiIEiVKyHV160qBAgUTzosMEEAAAQQQQAAB\nBBITIDBIzC/PnT158iQ5eOBA0q67aNGTpX6D+gQHSRMlIwQQQAABBBBAID4BAoP43PLsWePHjbXX\n3q79vQkZOPloJhocNGzUKKH8OBkBBBBAAAEEEEAgMQECg8T88tzZToc+WYFB0aJFzbCkvVKufHmp\nXfuqPOfJBSOAAAIIIIAAAqkiQGCQKi2RJvVIdmDQqnVrmTxpkhw6dIjgIE3uAaqJAAIIIIAAApkp\nQGCQme3q2lUlOzDQJw86kXnmjBkEB661GhkjgAACCCCAAAI5CxAY5GxEigABNwIDzT4wOKhZq5ac\nd975AaXyEQEEEEAAAQQQQMBtAQIDt4UzLH+3AgNl0qVQF8yfb8V0voHOO2BLrsCGDetl5MiRkj9/\nfnn22ZHJzTwFcvv777/l448+kuOOO04uuPDCXKnRr7/+Ku8vWSKVzztPTj/99FypQzIKzfR7JRlG\n5IEAAghkmgCBQaa1qMvX42ZgoFX/cuNGWbJksb0KfcdB6dJlXL4i97PX+RNvTZsm675YJ1s2b5Z9\n+/bJmWeeaZ+K3Nmihe3Eul+LwyV8sny5dOzYwS4Pu8x8zrTt3XfflYd7PGQva/KU16V8LgSXQ558\nUqZOfUNOPPFEmTtvvg3C0tE50++VdGwT6owAAgi4LUBg4LZwhuWf7MCgXv0Goi86C9yc4EBffKaT\nk9N5W7t2jfTr29c8DdlmL+OII44Qn8/nv6QTTjhBhgwZKpdUrerf5+aHTO/svffee9Ljoe6WcMrr\nb0i5cuVc4dRgr0CBAmHzHjpkiLzxxutykllxa86cuQQGYZXYiQACCCCQigIEBqnYKilcp2QFBgvm\nz/N3lrO73ESXRc0uby+OtW/fzrwp+lO58cYbpVHjJnLuuefKn3/8IZ9//rk8/fRTsnXrVvMeh6Ly\nxtQ37S/Mbtcp0wMDDbr0Go8rUkQqVaqUdM7du3fLM08/LcuWfSzvf7A0bP6///67LP3gAzuUqHjx\n4mHTpMPOTL9X0qENqCMCCCDgtQCBgdfiaV5esgKDQ4d+lyWLF8uuXbvsakSRWNI9MOjerZs0btJE\nqlevnuUS9+zZI00aN5ID5k3SHTt1knvuaZMlTbJ30NlLTPTT//xHNNg78sgj5T+frkwssxQ/m3sl\nxRuI6iGAAAIuCBAYuICayVkmKzDIycircnKqR6LH9+/fL0XMr9eRtn59+8isWbOkTp2rZdjw4ZGS\nJW0/nb3EKAkMEvPjbAQQQACB1BYgMEjt9km52nnVYfeqnNwGfvHFF+S5MWOkQoUKMnHS5KRWZ+fO\nb2TH1zvkHDPOXocr6RZLYKBDYjaayeB//fWnnHNOOTn22GNzrJ+uyPP111/LDz/8IGeccYb9p/Mq\nctr+MMOrdB7Gj/+8BVsn7ua06QpE27dvF/1bqlSpuMfy//Lzz7J23TopVqyYnRSuTwMibakQGMTT\nLpGux9mf6L2iQ7i+/fZb0x7b5KSTikqZMmUizsFwyuQvAggggEDqCRAYpF6bpHSNvOqwe1VObmOP\nME8JJk+eJFdeeaU89fQzCVdHO8ljxoyW6W+9Jfq0wtlKljxdevfpIz5zPKdVibST+Fj//rJq1SoT\nFPzlZGHH7D8+YKBZKaq0f5/z4ccff5Rx48baF9Vpx9XZCh9zjNS56ip57PEBzq6gv6tXr5bhw4bK\nl19+KX/++af/mE5Ib9nyLjsMy9lZvVpVm2bsuHFy8snF7OpDm80qT7rp0xZ96qL53d26ld2nQ30C\nO/kvvfiitalS5SJ5wXz+yCxrOm7s87J+/XobXOhJRx99tDS/4w7p0KFj0Lk9H35YFi5cYPMN9582\nbdpKh44d7aHQcnSnes6Y8Y6UPftss2LRm+GysPucwC1fvnx2RSMnoNOD8bRLxILMgWTcK9ruI4YP\nkw/MnIpffvnFX5y6V65cWXr17i1nn32Ofz8fEEAAAQRSW4DAILXbJ+Vq51WH3atychv4djP/YNOm\nrySwYxlvnfabZVC7d+8mK1ce7hCXLVtWzjVPIvb9tM90mFfJb7/9Jrc3bSqv/utfEZcrff/996VP\n717ys/kVXSfOXmjeBaC/BmuQ8N1330mhQoXkmWeeDVpFSctt07aNbN60yT5VqFXrUvt317e75Avz\nS7zmoysEBW6a5yjzPoXXXnvVdlB1BR99aqK/2n9tngKsWbNGbr75Znnk0V7+05zA4Lnnnrcd/HUm\n71NPPVW+//57GTJ0aEyBQZs2baRLl87m1+2TbMBToGBBWbd2rX3aoQXWqFlTRo0a7Q8OBg4cYN9N\noE82dE6Ibnqus91xx53+FbTCBQaff/6ZtLnnHpv8jalTI3aW+/bpLbNnz84ytCyednHqFu5vMu6V\npUs/sCtu6fK7hQsXthPrS5lleHft3GmDLXXSlZse6tFDbrutYbhqsA8BBBBAINUEzP9BsyEQtYD5\nhdWn/9zevCrH7evILv9Fi97zXVTlQl/VSy727d79bXZJozo2ePAgm98Vl1/m+3Dp0qBz9v30k69r\nl872uJZZo3q1oOP6xQz/8V1+2aU2zdChQ3zml39/GjNEyNejx0P22O1NGvvMkwT/sQkTxtv9Nzeo\n7/vJlBO4mV+RfYsXLQrcZT+/9dY0e87FF1XxjXz2WZ95WhCUxkxK95mVfYL2Vat6iT3nwQce8DVq\neJtvx44d9rh5MuLT69PNBDA2jV5jYB312IsvvGCPXXPN1b5La9X0mSFcQWnML+g2jdZJz585Y4ae\nFrT9Z8UKe+ySiy8K2h/4xSnnnrvvDtztUx/Nd9SokUH7nS9qpfXSNB9//JGzO+528WcQ5kOi98pe\nc69cecXltq73tm/n0++BmwkWfF06P2iP6732zTffBB7mMwIIIIBAigror4FsCEQt4FWH3atyor7w\nJCfcsmWLTzvw2gkcPXpUwrmbcf0+p+P83nvvhs3PPDHwNahfz99ZC03Ut28fe8wMNTIjjv4OPezT\nzl7tK6+waQLL6NDhXrvvqREjspwTbsf//vc/X+3aV9pzxsYQZDrXZ54cmEBqd7isowoM1Pzxx/qH\nPV93Ptyjh61b/Xo3BQUOeiyRwOCFFybYfOvddKNmlWWbPXuW/3hgUBNvu2Qp4J8dybhXzFMlW9db\nb70lS1DnlKvXoMfV+6Hu3Zzd/EUAAQQQSGEBAoMUbpxUrJpXHXavyskNYzOB1XfVPx1j8zKusJ3w\nWOulv7prB6xx40bZ5vfySy/ZdKFPDPTXaueXcjMUKWLxXbt2secHBjN6DVp2izvv8JmhNhHPdQ44\nv6jfcP31Pg1Wot2cwEA7pZG2aJ4YaF316UikzQxRstej6cyE2qBkiQQGGszokwbN18yFCMpXv2hA\npsc0gHC2RNrFySP0b6L3iraZc68sXLAgNPug77NmzbTXpG0XGOwEJeILAggggEDKCDDHINXGdqV4\nfbwa++9VOV5zv/766/LUiOF2Uq+OS+/cpYt/HHsiddH3JSxevEiamjkED/V4OGJWOlbdDCmyY7+X\nLf/En27jhg3SvHkzW5fHzUThfEfl8x8L/GCG18jHH38sdevWlUGDn7SHlixZIt26drGfzz//fDMJ\nt5NUNW9yjrQaUa9ej8q8uXPllltvlT59+gZmn+1nZ47Bwz17SpMmt4dNG83k41NOOcVO7A2bgdmp\nk6dr1axhD48fP0EuvuQSf9JoViUKN8fAyaBTp46yfNkyuf32ptLDTGh2Np0nceMN11uzOXPnmcnV\nJ9tDibSLk3fo30Tvla+++kqa3t7EZrto8RI5/vjjQ4vwf9cVqm695Wb7fcbMmaKT4NkQQAABBFJX\ngMAgddsmJWvmVYfdq3K8QtZlPAcOeFzmzZtnJ2o+aibV3mDehpyszZnE3KVrV7nzzhYRs3VWvSlQ\noKAsM28IdjatV69HH3G+5vjXWdnHSThp0kQ7mVgn5+p2plm5qFnTZtLATCAuaCb2Bm4agGiHt3Pn\nLtKiZcvAQ9l+dgKDp595Rq644sqwaaMJDC644AJ56eVXwp7v7LzqqtqiE3QfHzBAbrqpnrNbEg0M\n5s+fL48+0lN0svX8+Qv8QeFrr75qJnU/LbXNCk4jRjzlLy/RdvFnFPAh0Xvl3YUL5eGHe9gJ5pHe\n/uwUp/dDzRrV7QT20WZZ3po1azmH+IsAAgggkIICBAYp2CipXCWvOuxeleOFta7aYiZo2iU5y5l3\nCjz55BDbcU5m2XWvu9a+O0CXh8xuBRj9tf/++zplWZVInwT079/P7m/UqFGOVStZsqQ0bdYsKJ2Z\nYCoTJ74ms8wvwxoI6XamWaVmsLne8uXL+9PecH1d0bc+9+z5SNBypP4EET44gYEuV1q1arWwqaIJ\nDEKDmtCMdNlU7cweXs7zObtCkZMm0cDg0KFDct2119iVjXR1peo1Dj+Z0F/g9Zf4kWYlpEsvvdQp\nzi7/mmi7+DP750Oi98oMs+yqLr96wgknyHuLFodmH/Q90HLcuPFBq1kFJeQLAggggEBqCKTMoCYq\nkhYCXo3996oct9HNko2+O5o3s+OsdZWWwJV+kln2XS1b2DIirXjjlOWsBhQ6x8Asp2nP17HjZqlS\nJ3lcf38+eNBnfgH3r1pjAgGfOjhb27ZtbFnDhw1zdkX115ljsGLFJxHTRzPHoFmzphHP1wM7d+60\n9dPx/s7KR84JicwxcPIYNOgJm3+/fn3tLvMOB/vdDCXKMg4/me3ilJ/ovWKCL79PYLs6+Qf+VT91\n1H9muFTgIT4jgAACCKSgAJOPU7BRUrlKXnXYvSrHbWtnWcj7OnWMuHpLMupgxu3bzpeuEJTdNnDA\nAJsuNDDQTpvTgdPOaDK2L774wp/n4sWL/Vk6Jnfe0dy/L5oPyQoMzNOALB3wwPLfnDrV1ltXPwqd\nTJ2MwGDt2rU2f12VSgPFp59+yn6fMH58YDXsZzfaJdF7RVencu4VM78kS50Dd8ydM8d/rYH7+YwA\nAgggkJoCBAap2S4pWyuvOuxeleMmtBkuY98XoJ2ob745vOa+W+W9/fbb/s7a2jVrwhajddCAQOsT\nGhjoCc6TjXbt2oY939kZ7eoyms5Z3nTGO+84p/uX/NR6aMcx2i1ZgYGWO2XKlLDF6vsUnCVdNYAJ\n3dRWz9d/B82TkXCbs+pS6HsMAtM2btTQ5vHhhx/6dFlUXa3IvEAuMIn/c7LbJRn3SqeOHW399X0S\nke4H3d/wtlttOg1+2BBAAAEEUl+AwCD12yilauhVh92rctzE1bX+tQN5rXmhlnaScvoX7t0B0dZP\nO7Rm9Rdbnq6Tv2H9+qBTt27d6tPOqL7cS+sULjDQZVSdTu+AAY9nGVKk9f/3v9/26QvGArchTz7p\nCxeMOOvya56hQ3KcX60vu7SW7513/h2Ynf2sTxvmzp0btD+ZgYGWu2DB/KD8taPvdHj1qUK4oS97\n9+71G+lSnOG2aAIDHWqlLo6DDjOLtMXbLvqSOPMmZZ8uURu4JeNe0XchOEGmmoW+4ExfOucsbXt9\n3euy3EuB9eEzAggggEDqCDD5ODWmeqRNLbyaFOxVOW7C60o95qVfURehk34fMasVxbutWLHCLhtq\n1r6X/PnzS8VKlaSMWR1Il4xcu3adVKhYQVq0aCG6XGXoqkROmVpfrbduOrm0QoWKUvy04rLTTCzW\nybHm5WRmXwWZOGmyc4pZOrSxbN60Sc466yz77+ijj5Y1a9fK19u36w8PdpLyQw/18KfXD5qP6QzL\nmjVr7P4zzjjDTlA+ulAhm9cGs2qRTm7u3v0h/3nJmnysS6qWPP10MU8rpPy550r5cuXNxO3vbV3M\nmHm7ilK//o/ZJVn9hQd8aNe2jZh3Pdg9FStWlOOKFJEqF1aRtu3a2X3ZLVfqZPPj3r1yvZmErT46\nyfnZZ0fKZZdf7hzO8jeedjFPPGTam2/avF59baJUMveDsyXjXpk1a5YMHvSEmPca2JW29L4oZSab\n672yfv16O8Fal4YdNHiw6IRvNgQQQACB1BcgMEj9NkqpGnrVYfeqHDdxn3/+OXlhwoSoi0g0MNCC\ntm/bJr179xLzi7u/3CJmnfka1WuYdwb0sZ1f8yKtiIGBnqTvOhg+bKiYX5z9eeiHAgUKSL169aXl\nXXeJduSdbdTIkTJt2ptifnF3dtm/Jc2a9c2bN5fbzbsVwr3TQDvEr7z8sl3JSFduCty0w33f/Q9I\n9erV/buTFRhoJ3W8aZdhQ4fKrNmz5Jeff7ZlHHnkkTY46duvv+jqUZG27Sbg6WmW6zSThv1J7jd1\nbdW6tf0eTWCgCfV9Emp96qnFTT1m+5cu9Wca8iHWdnl7+nQZOHCAHHPMMTJr1mzR+yBwS8a9okHn\noCeeEDMvRcyTCH/2hU2ZderUkW7duksREzixIYAAAgikhwCBQXq0U8rU0qsOu1flpAxskiuiv3x/\nuXGj/dX/rLJlw3bMcypS1/HXpwT6q/ZpJU6zHdijjjoq7Gm6DKd2mM3wG/O04igpXvw08zKrkjl2\ndp3MdPnSLZs3y9GFjpbTTjtclnMsWX/Dddg1ONlonA6Zl5qVM0uqFjJPLKLZ9LwdplNs3qAsZ59z\nTrYv+Yomv1jSxNIu20ygWKxYMRscRCojGfeKBgUaaOz5fo+UKnWmlChRIq57LlId2Y8AAggg4I0A\ngYE3zhlTilcddq/KyZiG4UJyFAgXGOR4EgkQQAABBBDIQwIEBnmosZNxqV512L0qJxkmyc5jmBnG\nE+12XuXz5Pobbog2eZ5OR2CQp5ufi0cAAQQQiEKAwCAKJJL8v4BXHXavyvn/K0udT+YlY1FXpkGD\nm6WfeQstW84CBAY5G5ECAQQQQCBvCxAY5O32j/nqveqwe1VOzAAenBA6iTe7InX1oYIFC2aXhGP/\nCBAYcCsggAACCCCQvQCBQfY+HA0R8KrD7lU5IZfH1wwWIDDI4Mbl0hBAAAEEkiJAYJAUxryTyeTJ\nk+SgWfHGi61o0aLSsFFjL4qijDwgsG7dOlm9epWcUuwUuebaa/PAFXOJCCCAAAIIxCZAYBCbV55P\nvW3bVln56adi3gDrqsWxxx0ntWrVktKly7haDpkjgAACCCCAAAIIHBYgMOBOQAABBBBAAAEEEEAA\nASEw4CZAAAEEEEAAAQQQQAABAgPuAQQQQAABBBBAAAEEEBACA24CBBBAAAEEEEAAAQQQIDDgHkAA\nAQQQQAABBBBAAAEjwBwDbgMEEEAAAQQQQAABBBAgMOAeQAABBBBAAAEEEEAAAZ4YcA8ggAACCCCA\nAAIIIICAEWAoEbcBAggggAACCCCAAAIIEBhwDyCAAAIIIIAAAggggABPDLgHEEAAAQQQQAABBBBA\nwAgwlIjbAAEEEEAAAQQQQAABBAgMuAcQQAABBBBAAAEEEECAJwbcAwgggAACCCCAAAIIIGAEGErE\nbYAAAggggAACCCCAAAIEBtwDCCCAAAIIIIAAAgggwBMD7gEEEEAAAQQQQAABBBAwAgwl4jZAAAEE\nEEAAAQQQQAABAgPuAQQQQAABBBBAAAEEEOCJAfcAAggggAACCCCAAAIIGAGGEnEbIIAAAggggAAC\nCCCAAIEB9wACCCCAAAIIIIAAAgjwxIB7AAEEEEAAAQQQQAABBIwAQ4m4DRBAAAEEEEAAAQQQQCD+\nwODggf3wIYAAAggggAACCCCAQIYIxP3EgMAgQ+4ALgMBBBBAAAEEEEAAASMQd2CAHgIIIIAAAggg\ngAACCGSOAIFB5rQlV4IAAggggAACCCCAQNwCBAZx03EiAggggAACCCCAAAKZI0BgkDltyZUggAAC\nCCCAAAIIIBC3AIFB3HSciAACCCCAAAIIIIBA5ggQGGROW3IlCCCAAAIIIIAAAgjELUBgEDcdJyKA\nAAIIIIAAAgggkDkCBAaZ05ZcCQIIIIAAAggggAACcQsQGMRNx4kIIIAAAggggAACCGSOAIFB5rQl\nV4IAAggggAACCCCAQNwCBAZx03EiAggggAACCCCAAAKZI0BgkDltyZUggAACCCCAAAIIIBC3AIFB\n3HSciAACCCCAAAIIIIBA5ggQGGROW3IlCCCAAAIIIIAAAgjELUBgEDcdJyKAAAIIIIAAAgggkDkC\nBAaZ05ZcCQIIIIAAAggggAACcQsQGMRNx4kIIIAAAggggAACCGSOAIFB5rQlV4IAAggggAACCCCA\nQNwCBAZx03EiAggggAACCCCAAAKZI0BgkDltyZUggAACCCCAAAIIIBC3AIFB3HSciAACCCCAAAII\nIIBA5ggQGGROW3IlCCCAAAIIIIAAAgjELUBgEDcdJyKAAAIIIIAAAgggkDkCBAaZ05ZcCQIIIIAA\nAggggAACcQsQGMRNlzdP3LZtq6z8dKXs3ftDwgAlSpSQ6+rWlQIFCiacFxkggAACCCCAAAIIJCZA\nYJCYX547e/LkSXLwwIGkXXfRoidL/Qb1CQ6SJkpGCCCAAAIIIIBAfAIEBvG55dmzxo8ba6+9Xft7\nEzJw8tFMNDho2KhRQvlxMgIIIIAAAggggEBiAgQGifnlubOdDn2yAoOiRYuaYUl7pVz58lK79lV5\nzpMLRgABBBBAAAEEUkWAwCBVWiJN6pHswKBV69YyedIkOXToEMFBmtwDVBMBBBBAAAEEMlOAwCAz\n29W1q0p2YKBPHnQi88wZMwgOXGs1MkYAAQQQQAABBHIWIDDI2YgUAQJuBAaafWBwULNWLTnvvPMD\nSuUjAggggAACCCCAgNsCBAZuC2dY/m4FBsqkS6EumD/fiul8A513wJY3BbZs2SLDhw+zFz969Bg5\n8sgjUxpiw4b1MnLkSMmfP788++zIlK4rlUMAAQQQQCCSAIFBJBn2hxVwMzDQAr/cuFGWLFlsy9Z3\nHJQuXSZsPdJp58qVK2XWzJmyffs22b37OylU6GgpXaaM1L6yttxUr17Kd3pzw3r16tVyd+tWtuj/\nmPdmpHpg8Mny5dKxYwe77O4y85kNAQQQQACBdBQgMEjHVsvFOic7MKhXv4Hoi84CNyc40Bef6eTk\ndN5Gjx4lL7/0kv8SjjjiCPH5fP7vFSpUkLHjxsuxxx7r38cHkWgDA520XqBAgVwnIzDI9SagAggg\ngAACSRAgMEgCYl7KIlmBwYL588zQoW050iW6LGqOBbicQIfDfPHFF9KqVSspX/5cKVasmOzZs0fm\nzpkjEyaMl99//12uufZaGTJkqMs1Sa/scwoMpk2bJm9OnSrXXnettGnTNtcvjsAg15uACiCAAAII\nJEGAwCAJiHkpi2QFBocO/S5LFi+WXbt22dWIIhmme2Dw3Xe75dRTi4e9vEmTJspTI0aIPkVYtHiJ\nFClSJGy6vLgzp8CgbZt75LPPPpMOHTsSGOTFG4RrRgABBBBwRYDAwBXWzM00WYFBTkJelZNTPdw8\nrk8Obri+ri1inBlOdEnVqm4Wl1Z5ExikVXNRWQQQQACBDBEgMMiQhvTqMrzqsHtVjldu4crR8fE1\na1S3h1599TWpVLlyuGRx7/v777/NhOfton9LlSplV8wJzWz/vn2ywUz4Pt48rShz1llRjdf/9ddf\n5euvv5YffvhBzjjjDPtPn3okc0tmYJDs+u7c+Y3s+HqHnFOunOibu3WLZSiRzjH59ttv7WT0k04q\nKmXMRPRUmCeRzPYjLwQQQACB9BQgMEjPdsu1WnvVYfeqnFyDNAWvW7tWWrZsYVeyWfjuuwlPQK5e\nrar8+eefZjLzODn55GLycI+HZPPmzfYShw0fLnXqXO2/XO3IDhnypA0cnJ358uWTa665Rh7t1Tts\nXX788UcZN26sfRmdzo1wtsLHHCN1rrpKHnt8gLNLRo0aKa+8/LJcccWV8vQzz/j3B37QoOW2W2+x\nuxa++56cdNJJ/sPhAoOtW7dKo4a3+dOE+xC4glEs9Q2XV+A+Da7GjBkt0996S/bv3+8/VLLk6dK7\nTx/xmeM5rUqk9Rlh5px88MEH8ssvv/jz0BWXKpugsFfv3nL22ef49/MBAQQQQAABrwUIDLwWT/Py\nvOqwe1VObjWHduDvbd9ePv/8M7njjjula7duCVfFCQyee+5524ldt26dmd9wqnz//fcyZOhQf2Aw\nduzz8sKECXZ1pPLmXRHnnltBtNP62Wcr5eeff5aSJUvKK6/8S07659dwrZg+WWjTto1s3rTJBg21\nal1q/+76dpd8YcopXry4THn9Df81uBEY6FOKe+4+vEqVds7VsFChQvafU/D8BQvt0qax1tc5P9xf\nzat7926iy85qJ75s2bJyrllNat9P+8zqSavkt99+k9ubNpVX//UvG+SFW6506dIPpF/fvrLP5FW4\ncGFjfq6UOvNM2bVzp6xfv14OHDhgnxo81KOH3HZbw3DVYB8CCCCAAALuC5jH2mwIRC0wbuzzPv3n\n9uZVOW5fh+Zvfl337d2712cmWvtWrVrle+ON13233nqL76IqF/oe6fmwPZ6MelSreonN88EHHvCZ\nX9Z9O3bssNmaTrRv308/2c8ffvihTaNpZ86cGVSs1q9xo4b2+JAnnww6ZlZQsvtvblDf99M/eTkJ\nzK/fvsWLFjlf7d+RI5+16Ts/+GDQ/sAvZlUqm0Yd1CdwUyfdr//++uuvwEP2c5t77rbHtF7htljr\nGy4PZ9/gwYNsWVdcfpnvw6VLnd32r7p27dLZX9ca1asFHdcve3/4wXflFZfbNPe2b2e/ByYywYKv\nS+cH7XE9/5tvvgk8zGcEEEAAAQQ8E+CJgfuxV0aV4NUv+V6V40XjzJkzW/qYYSKB25mlS0vPno9I\ntWrVAncn9Nl5YqBv331nxkz7tCAwwz/++EOaNG5k5wd06nSf3H3PPYGH7eeVn34q7dq1tfMRZs+Z\n6x9Dr8NkdPjRnXe2kC5du2Y5L3SHG08MAsvIaVWiWOsbmHfgZxNc2eFL+nQidDiWk06HVamr6dDb\nX/2XLf/EOWT/9u3TW2bPni3a5m++OU10yFbopkOVGjVqKNvNEr5XX321DB02PDQJ3xFAAAEEEHBd\ngMDAdeLMKsCrDrtX5XjROuZXZnnuuTF2WVadsKvDRnQrcvzxctNNN4l20nVITKKbExhono8PGJgl\nu48++kgeuP8+KViwoCx5/wPbic2SyOyofeUVto46JKl6jRo2ic5XeNfMg6hUqZK89PIrctRRR4U7\n1b8vtwODWOvrr3jIh1EjzVyJV16WsmefLW+8MdUuLRuSxH7V+RR6zTqJODAw0KDh0lo17bAtfVeF\nvrMi0jZ79izpa+YrqK3mkepve450HexHAAEEEEhfAQKD9G27XKm5Vx12r8rJDUQdxz937lw7Jl1X\nuDnLrAb02sRJcvTRRydUHScweLhnT2nS5PYseTnvTShtfrluf++9WY47O541k4V3795tJiH3koYN\nG9ndS5YskW5du9jP559/vnl/QCepapZXjbQaUW4HBrHW17n20L/dzdyPxYsXSVMzh+ChHg+HHvZ/\nf//998UMKcoSGHz11VfS9PYmNp2+q+J4EwxG2nQOxa233GwPz5g508z1OD1SUvYjgAACCCDgigCB\ngSusmZupVx12r8rJzZbSl5+1bNHCLvt5p/nbpUvOQ3Syq68TGOgqQLoaUOj2xMCBMn36W6G7I35v\n07atdOjQ0X9cAwv9BV2HJOmmQ2OaNW0mDW6+2T6F8Cc0H3I7MNC6xFLfwLoHfr69SRPZtOkrO3xK\nh1FF2iItV/ruwoXy8MM97ETt9z9YGul0u19ddflaM5BURo8ZIzVr1so2PQcRQAABBBBItgCBQbJF\nMzw/rzrsXpWT282ly3+ON8uLaid7+vS3E6qOExjocqVVq2adu9CvX1+ZZX6J1ncPXH75FTmWVcMM\nI7r0ssuC0uk4+okTX7P56PsBdDvTrK4z+MkhoiscOVsqBAZal2jr69Q79G/d6661gZsuJZrdakEf\nf/yx3H9fJ/PEoKAZBrTcn82MGe/IY/37ywknnCDvLVrs3x/ug85j0MBA5xvwwrtwQuxDAAEEEHBb\ngMDAbeEMy9+rDrtX5eR28yxa9J481L27neyr48ojDc2Jpp45BQYvvDBBnn/uOTtP4NXXJkaTZcQ0\nv5jhUNOnTxfNU+dM6LKoU83E2mOPPdaeo0uiThg/Xi6++GIZP+GFsPmsXbtG7mrZ0h6L5j0GgZnk\nNPk4MK1+zqm+oemd763uailr1qyR1nffLffdd7+zO8tffRKjT2RC5xj897//ldat7rLp9YmB45Ml\nA7NDgxiz6pM9pMuunnzyyeGSsQ8BBBBAAAH3BDxb/4iCMkLAq2VEvSontxvFDHexy1Q2a3p7wlVx\nlitdseKTsHmZeQ22rMsurZW0JVK/+OILm6cuK7p48WJ/ueZFYHZ/g/r1/PtCP8ycMcN/ri7pGbgl\nulxpYF6BnyPVNzBN4OdevR61dezQ4d7A3Vk+DxwwwKYLXa5UlyJ1ll018x6ynBe4Y+6cOTatLovK\nhgACCCCAQG4I8MTAvZgrI3P26pd8r8pxs5F0SEh2K8vo0JG7W7cSfRGZDlPR4SqJbDk9MTDvCrC/\nSOsQoHvv7SBt27WLWFxOdXdO1HRX17nKvg24f//HpH6DBvbQ8mXLzGpLHe0TEH2SoBOsAzfzP3bm\naUELe+26f+HCd4NeqBbuzceB5+vqSrrKUqwvh4tU38C8Az//+9//lgGPP2Z3vfrqa1LJvKE4dNMJ\n5I0aNrSrToU+MdC093XqJMuWfWwN3pj6Zth7QuulS57q251bmKconTsfnugdWhbfEUAAAQQQcFUg\nN6IRykxfAa9+yfeqHDdbQl/61a1rV5++yCt0M28j9j3co4f9hbh27St93377bWiSmL/n9MRAMzRD\nfPy/bE+ZMsVnOqRB5fx88KDPzA/wjRk9Omi/vvBs7Zo1Qfv0i1li0/+LuPNCNd1vgg/fNVfXscfa\nt2vnM8ONdLfdzCRb39ChQ3w1qlf3nxvrE4NBg56w5zZp3NiW5eTt/I21vuatxr4eD3UPeuqheZng\nzWdWCrJl1bvpRt+G9eudIuxfu5UEgwAACZlJREFU05G3L4W75pqrbZrQJwaayKw2ZK61mj3eqWPH\nLC840xfQde3axR6/vu51PrNqVVAZfEEAAQQQQMArAZ4YuBp2ZV7mXv2S71U5braQLnOpy13qUwOd\n8FumTBkpUuR40V+Y9SnBb7/9ZpcoHTp0WJZJvvHUK6cnBpqnPi24/7775PPPP7NF6JKYOmn4uOOO\nky1bNpsVeDbZNKGrJDVp0lg2m2P6y7/+06VV16xdK19v325X0WnarJk89FCPoGpPnjxJRgw//KKu\nokWLSpUqVSS/Wed/9apV9gmDPiF5xCytqluscwycF7Hpucccc4zoROm1a9fJLPMiMfWOtb7mTdH2\n13qdA6CThAPf07BixQq7VKt5w7OdC1LRvMuhjJksrsuLapkVKlaQFmZVKW3r0MnHWj/dZs2aJYMH\nPWHbvHDhwlKhQgUpZSZt7zTzCtavX2/naZxyyikyaPBg43TR4ZP4LwIIIIAAAh4LEBh4DJ7uxXnV\nYfeqHDfbY8+ePWKefMi8efNshzCwLB1ycuONN8q9ZjnQYsWKBR6K+3M0gYFmrsNWXn75JXnt1Vf9\nL1tzCj3ppJNEO/n6HgQNFpxNlymdNu1NOXjwoLPL/tXAonnz5nK7Wec/3MTpt80E5aeeGiHaqdZN\n05Qte7Y8+uijcsKJJ8ptt95i98caGOhJOvFZJzjrkCzdNFhZ+uFHNjCItb5mLoHMM++WuODCC+Wl\nl162+QX+R99I3Lt3LzFzFPy79QV1NarXkD7mpWQ6QVnfthwpMNCTNJAY9MQTNihz6qz7C5vApk6d\nOtKtW3cTOBbRXWwIIIAAAgjkigCBQa6wp2+hXnXYvSrHi5bQJwO7du2SPd99J2bgjlnes5ScdlqJ\nsGPNvahPYBn6IrOtW7eYX92PNXU6TfSX/UjzIg4dOiTbzRMCMwzK/HJ+lBQvfpp5CVfJiOmdcv76\n6y/bKf7OlFWhYsVsX/LlnBPtXzMMR7Zu2WI712XLlg2qSyz1NY9oZePGDXLOOeUkX758EYvXFZi+\n3LjRLj96likvXDAU8eR/DmhQoIHGnu/3SKlSZ0qJEiXiyiencjiOAAIIIIBArAIEBrGK5fH0XnXY\nvSonjzcnl48AAggggAACCPgFCAz8FHyIRsCrDrtX5URzzV6nGTZsaNRFnlf5PLn+hhuiTk9CBBBA\nAAEEEEAgkgCBQSQZ9ocV8KrD7lU5YS8yl3defFGVqGvQoMHN0s+8WZcNAQQQQAABBBBIVIDAIFHB\nPHa+Vx12r8pJxeYLneCbXR3z588vBQsWzC4JxxBAAAEEEEAAgagECAyiYiKRI+BVh92rcpzr4i8C\nCCCAAAIIIJDXBQgM8vodEOP169r0B83KLF5sukJOw0aNvSiKMhBAAAEEEEAAgTwvQGCQ52+B2AC2\nbdsq+nKpvXv3xnZijKmPNWvo16pVS0qXLhPjmSRHAAEEEEAAAQQQiEeAwCAeNc5BAAEEEEAAAQQQ\nQCDDBAgMMqxBuRwEEEAAAQQQQAABBOIRIDCIR41zEEAAAQQQQAABBBDIMAECgwxrUC4HAQQQQAAB\nBBBAAIF4BAgM4lHjHAQQQAABBBBAAAEEMkyAwCDDGpTLQQABBBBAAAEEEEAgHgECg3jUOAcBBBBA\nAAEEEEAAgQwTIDDIsAblchBAAAEEEEAAAQQQiEeAwCAeNc5BAAEEEEAAAQQQQCDDBAgMMqxBuRwE\nEEAAAQQQQAABBOIRIDCIR41zEEAAAQQQQAABBBDIMAECgwxrUC4HAQQQQAABBBBAAIF4BAgM4lHj\nHAQQQAABBBBAAAEEMkyAwCDDGpTLQQABBBBAAAEEEEAgHgECg3jUOAcBBBBAAAEEEEAAgQwTIDDI\nsAblchBAAAEEEEAAAQQQiEeAwCAeNc5BAAEEEEAAAQQQQCDDBAgMMqxBuRwEEEAAAQQQQAABBOIR\nIDCIR41zEEAAAQQQQAABBBDIMAECgwxrUC4HAQQQQAABBBBAAIF4BAgM4lHjHAQQQAABBBBAAAEE\nMkyAwCDDGpTLQQABBBBAAAEEEEAgHgECg3jUOAcBBBBAAAEEEEAAgQwTIDDIsAblchBAAAEEEEAA\nAQQQiEcg7sDg4IH98ZTHOQgggAACCCCAAAIIIJCCAgQGKdgoVAkBBBBAAAEEEEAAAa8F4g4MvK4o\n5SGAAAIIIIAAAggggIB7AgQG7tmSMwIIIIAAAggggAACaSNAYJA2TUVFEUAAAQQQQAABBBBwT4DA\nwD1bckYAAQQQQAABBBBAIG0ECAzSpqmoKAIIIIAAAggggAAC7gkQGLhnS84IIIAAAggggAACCKSN\nAIFB2jQVFUUAAQQQQAABBBBAwD0BAgP3bMkZAQQQQAABBBBAAIG0ESAwSJumoqIIIIAAAggggAAC\nCLgnQGDgni05I4AAAggggAACCCCQNgIEBmnTVFQUAQQQQAABBBBAAAH3BAgM3LMlZwQQQAABBBBA\nAAEE0kaAwCBtmoqKIoAAAggggAACCCDgngCBgXu25IwAAggggAACCCCAQNoIEBikTVNRUQQQQAAB\nBBBAAAEE3BMgMHDPlpwRQAABBBBAAAEEEEgbAQKDtGkqKooAAggggAACCCCAgHsCBAbu2ZIzAggg\ngAACCCCAAAJpI0BgkDZNRUURQAABBBBAAAEEEHBPgMDAPVtyRgABBBBAAAEEEEAgbQQIDNKmqago\nAggggAACCCCAAALuCRAYuGdLzggggAACCCCAAAIIpI0AgUHaNBUVRQABBBBAAAEEEEDAPQECA/ds\nyRkBBBBAAAEEEEAAgbQRIDBIm6aioggggAACCCCAAAIIuCdAYOCeLTkjgAACCCCAAAIIIJA2AgQG\nadNUVBQBBBBAAAEEEEAAAfcECAzcsyVnBBBAAAEEEEAAAQTSRoDAIG2aiooigAACCCCAAAIIIOCe\nAIGBe7bkjAACCCCAAAIIIIBA2ggQGKRNU1FRBBBAAAEEEEAAAQTcEyAwcM+WnBFAAAEEEEAAAQQQ\nSBsBAoO0aSoqigACCCCAAAIIIICAewIEBu7ZkjMCCCCAAAIIIIAAAmkjQGCQNk1FRRFAAAEEEEAA\nAQQQcE+AwMA9W3JGAAEEEEAAAQQQQCBtBAgM0qapqCgCCCCAAAIIIIAAAu4JEBi4Z0vOCCCAAAII\nIIAAAgikjQCBQdo0FRVFAAEEEEAAAQQQQMA9AQID92zJGQEEEEAAAQQQQACBtBEgMEibpqKiCCCA\nAAIIIIAAAgi4J0Bg4J4tOSOAAAIIIIAAAgggkDYC/wdaA+RtC1w02QAAAABJRU5ErkJggg==\n"
}
},
"id": "4cb45106-6c93-430f-aef7-292bc46c6319"
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
" /* Project info */\n",
"\n",
" clear\n",
"\n",
" /* Directory settings: paths to folders, defined as globals */\n",
"\n",
" /* Project settings: such as global variables and other macros */\n",
"\n",
" /* Run the do-files: runs all of the do-files for the project */ \n"
],
"id": "d7264d25"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The master file begins with project information, usually included in a\n",
"block comment followed by the `clear` command. We then establish our\n",
"**directory settings** and **project settings**, both of which are\n",
"defined below. The final component of the script is to **run the\n",
"do-files** in our project.\n",
"\n",
"Each of these three components is discussed in turn below with the code\n",
"that will be included in this master do-file.\n",
"\n",
"### 18.3.2 Directory Settings\n",
"\n",
"Above, we indicated that our master do-file will contain **directory\n",
"settings**. Here is an example of what those should look like.\n",
"\n",
"There are two essential tools utilized in this master file:\n",
"\n",
"1. Relative file paths\n",
"2. Macros (i.e. locals and globals)\n",
"\n",
"As we learned in [Module\n",
"4](https://comet.arts.ubc.ca/docs/Research/econ490-pystata/04_Locals_and_Globals.html),\n",
"macros store information either temporarily with `local` objects or\n",
"permanently with `global` objects. Locals store information within a\n",
"code instance and disappear once the instance ends. Globals are stored\n",
"in memory until you close Stata, hence they are considered “permanent”.\n",
"\n",
"In this workflow example, we will define the key paths in globals.\n",
"\n",
"- The unique name of our project is stored in the global called\n",
" *proj_name*.\n",
"- The path to our main folder (defined above) is stored in the global\n",
" *proj_main*.\n",
"- Each sub-directory’s path has its own global; for example, the path\n",
" to the data folder is called *data*. Note that we don’t need to\n",
" specify the full file path for each sub-directory, as it would be\n",
" already included in the main folder. For example, for the data\n",
" folder, we can simply use `${proj_main}/data`.\n",
"\n",
"Here is an example. Be sure to edit this information for your own\n",
"project!"
],
"id": "1d48c1e5-0541-4abc-a575-e5db38454dd7"
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"\n",
"*********************\n",
"* Directory Settings\n",
"*********************\n",
"\n",
"\n",
"global proj_name \"Fake Project\"\n",
"global proj_main \"$file_path/projects/${proj_name}\"\n",
"global datadir \"${proj_main}/data\" // Raw Files and Output from those\n",
"global figdir \"${proj_main}/figures\" // Figure path\n",
"global tabledir \"${proj_main}/tables\" // Tables Path\n",
"global do_dir \"${proj_main}/do_files\" // Do-files path\n",
"global log_dir \"${proj_main}/logfiles\" // Log-file path"
],
"id": "80f12c5d"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Setting up the directory using globals can be very useful. Imagine that\n",
"in the do-file called `1_build_data.do`, we want to load our data set\n",
"saved under the file name *fake_data.csv* in the data folder *data* in a\n",
"sub-directory called *raw*. Instead of defining the full file path of\n",
"*fake_data.csv*, we can conveniently use our globals as follows:"
],
"id": "cc4c08b9-035d-44c9-b253-f8d5fc4d8841"
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"import delimit using ${datadir}/raw/fake_data.csv, clear"
],
"id": "2f8408fc"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"where we are telling Stata to go to the folder *raw* within the folder\n",
"specified by the global *datadir* that we had defined earlier.\n",
"\n",
"### 18.3.3 Run the do-files\n",
"\n",
"The final component of the master do-file is the running of the\n",
"do-files. Here, we go over a simple example without using the project\n",
"settings. The optional approach with those settings is further below.\n",
"\n",
"As we saw in [Module\n",
"2](https://comet.arts.ubc.ca/docs/Research/econ490-pystata/02_Working_Dofiles.html),\n",
"we run a do-file by using the command `do` followed by the file path of\n",
"the appropriate do-file.\n",
"\n",
"For example, if we wanted to run the do-file that builds the data\n",
"(`1_build_data.do`) that is stored in the folder indicated by the global\n",
"`do_dir`, we would use the following command:"
],
"id": "e3196ff3-07ab-4438-8755-71eb0fc8843a"
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"do \"${do_dir}/1_build_data.do\""
],
"id": "48f82dd8"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In our master do-file, we would include the code for running all the\n",
"do-files like this:"
],
"id": "21a61cee-d08b-4913-bc57-0484551312ff"
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"******************\n",
"* Run the do-files\n",
"******************\n",
"\n",
"do \"${do_dir}/1_build_data.do\"\n",
"\n",
"do \"${do_dir}/2_descriptive.do\"\n",
"\n",
"do \"${do_dir}/3_results.do\""
],
"id": "8f76768e"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The master do-file simply runs all of the project do-files in the\n",
"appropriate order. Notice how the naming convention makes it easy to\n",
"identify the sequence in which we need to run the do-files. File names\n",
"are descriptive and sequentially numbered.\n",
"\n",
"### 18.3.4 Using UBC Microsoft OneDrive\n",
"\n",
"Let’s say that have been asked to create a series of folders that will\n",
"hold all of the information for our project. There are good reasons for\n",
"keeping those folders on UBC OneDrive. We might, for example, want to be\n",
"able to access that information when we are away from your computer (for\n",
"example, working in a lab). We might (legitimately!!) be concerned that\n",
"all of our hard work will be lost if our computer is damaged or stolen.\n",
"Finally, we might be working as part of a group - in which case file\n",
"sharing will be necessary! Setting up OneDrive and installing the\n",
"application on your own computer will resolve all of those issues.\n",
"\n",
"[UBC Microsoft\n",
"OneDrive](https://lthub.ubc.ca/guides/microsoft-onedrive-student-guide/)\n",
"is a secure file-hosting service that allows us to store, share, and\n",
"synchronize files and folders from any connected devices. You can learn\n",
"how to store files on this service from the link provided above, but\n",
"here we are going to cover how to access these files directly from Stata\n",
"on any computer.\n",
"\n",
"To begin, we need to follow the instructions for our operating system to\n",
"install the Microsoft OneDrive application on any computer that we want\n",
"to work on. Once we have complete this process, we will see a new folder\n",
"in our computer directory which contains all of the files in our\n",
"OneDrive folder.\n",
"\n",
"To see how this works, we can edit the command below to access that\n",
"directory on our computer. You will need to determine the file path on\n",
"your computer and edit the example path here. When we run this command,\n",
"Stata will understand that it should use this directory moving forward.\n",
"We have also included `dir` so that we can see our folders in that\n",
"directory. If we have already set up the folders for our project, we\n",
"will see them there."
],
"id": "9451e8b0-42f9-4e9e-bd82-e46f53e6f7ed"
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"\n",
"cd \"/Users/fake_user/Library/CloudStorage/OneDrive-UBC\"\n",
"dir"
],
"id": "4175b866"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now whenever we include the file paths in our globals or do-files, we\n",
"can point to our UBC OneDrive folders, and always have access to the\n",
"most recent version of our work!\n",
"\n",
"## 18.4 Best Practices for Writing Code\n",
"\n",
"There are three core practices that will make it easy to write, edit and\n",
"understand code:\n",
"\n",
"1. Adding comments.\n",
"2. Splitting up code into multiple lines.\n",
"3. Indenting and spacing code.\n",
"\n",
"### 18.4.1 Commenting\n",
"\n",
"Leaving comments will not only help us remember what we have done, but\n",
"it will help our group members, TAs, instructors, and supervisors\n",
"understand our thought process.\n",
"\n",
"There are three ways to comment in a Stata do-file:"
],
"id": "5fa070ed-3986-4e3a-85db-0ae641916527"
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"* comments on individual lines\n",
"\n",
"// comments on individual lines and after some code\n",
"\n",
"/*\n",
"comments on multiple lines\n",
"like a \"code block\"\n",
"*/"
],
"id": "ea5b89ee"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also use a series of asterisks `*` to format our do file and\n",
"partition your code. In the `0_master.do` example we saw earlier, the\n",
"directory settings were highlighted as such. See the example again\n",
"below:"
],
"id": "06683855-076d-4d22-b9a0-25b940c9881f"
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"********************\n",
"* Directory Settings\n",
"********************"
],
"id": "28d172e3"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Formatting do-files in this manner creates visual bookmarks and\n",
"highlights different sections of our script.\n",
"\n",
"Another use for comments is to “comment out” code that we might be\n",
"testing or might need later. Use an asterisk to comment out a line:"
],
"id": "4b68c44b-f775-4eab-a74f-dec6eb430fea"
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"*gen log_earnings = log(earnings)"
],
"id": "43423582"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Or comment out a block of code:"
],
"id": "ca76a6f4-f731-480e-a369-fa87326c393e"
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"/*\n",
"label variable workerid \"ID\"\n",
"la var treated \"Treatment Dummy\"\n",
"la var earnings \"Earnings\"\n",
"la var year \"Calendar Year\"\n",
"*/"
],
"id": "00fbbb7b"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Most importantly, we should leave comments before and after our code to\n",
"explain what we did!"
],
"id": "9d076867-f263-466b-b3c5-614782e9f6c9"
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"* Open Raw Data\n",
"import delimit using \"${datadir}/raw/fake_data.csv\", clear\n",
"\n",
"la var birth_year \"Year of Birth\" // label variable"
],
"id": "4e9d89b7"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we move on to writing more complex code, leaving comments will become\n",
"more helpful.\n",
"\n",
"### 18.4.2 Splitting the Code Across Lines\n",
"\n",
"In Stata, we can split code across multiple lines using three forward\n",
"slashes `///`. This can be particularly useful when making graphs. Let’s\n",
"see an example to understand why. Imagine we want to create a graph\n",
"overlaying information for treated workers and untreated workers, such\n",
"that they are marked with two different colors (we covered in detail how\n",
"to do this in [Module\n",
"9](https://comet.arts.ubc.ca/docs/Research/econ490-pystata/09_Stata_Graphs.html).\n",
"The line of code to do it is:"
],
"id": "0e1c8ebe-de0c-4c93-9b86-d86a1526c5c4"
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"twoway (connected log_earnings year if treated) || (connected log_earnings if !treated), ylabel(#8) xlabel(#10) ytitle(\"Log-earnings\") xtitle(\"Year\") legend( label(1 \"Treated\") label(2 \"Control\"))"
],
"id": "ca1f6c8b"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Making a graph has a lot of small components, all clustered together in\n",
"a single line of code. If we had to go back and change the number of\n",
"ticks for the x-axis `xlabel(#)`, it is safe to say it might take us a\n",
"moment to parse through all this code.\n",
"\n",
"Now, let’s format this code block using `///` to split it across\n",
"multiple lines:"
],
"id": "d1715f48-0481-46d8-93cf-d1159a217c09"
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"twoway ///\n",
" (connected log_earnings year if treated) || (connected log_earnings year if !treated) , ///\n",
" ylabel(#8) xlabel(#10) ///\n",
" ytitle(\"Log-earnings\") xtitle(\"Year\") ///\n",
" legend( label(1 \"Treated\") label(2 \"Control\"))"
],
"id": "c9e0caec"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Is it easier for you to find `xlabel(#)` this time around?\n",
"\n",
"Using `///` is a simple step we can take to make code blocks appear neat\n",
"and legible.\n",
"\n",
"### 18.4.3 Indent and Space our Code\n",
"\n",
"Using indentations in our code and spacing it neatly can improve its\n",
"readability with little effort. We can use the `tab` button on our\n",
"keyboard to indent and organize our code. Let’s reformat the last\n",
"example to see this in action."
],
"id": "cb860abc-9554-4eef-8198-28ff3dd48bdd"
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"twoway ///\n",
" (connected log_earnings year if treated) ///\n",
" || ///\n",
" (connected log_earnings year if !treated) ///\n",
" , ///\n",
" ylabel(#8) ///\n",
" xlabel(#10) ///\n",
" ytitle(\"Log-earnings\") ///\n",
" xtitle(\"Year\") ///\n",
" legend( ///\n",
" label(1 \"Treated\") ///\n",
" label(2 \"Control\") ///\n",
" )"
],
"id": "c286efb9"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is the same code block as before, but it is significantly easier to\n",
"read this time around. Try to find `xlabel(#)` once again. Do you notice\n",
"any difference?\n",
"\n",
"We might not want to indent our code on such a granular level as shown\n",
"in the example above. That’s okay, as long as the code is organized in a\n",
"way that is clear to us and our collaborators and is generally easy to\n",
"understand.\n",
"\n",
"### 18.4.4 Putting it All Together\n",
"\n",
"Let’s review a final example which combines all the code styling tools\n",
"we have discussed so far:"
],
"id": "fd7345c6-3afe-4174-a7ec-7a39625647f9"
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"twoway ///\n",
" (connected log_earnings year if treated) /// // log earnings, treated vs control group\n",
" || ///\n",
" (connected log_earnings year if !treated) ///\n",
" , ///\n",
" ylabel(#8) /// // label ticks\n",
" xlabel(#10) ///\n",
" ytitle(\"Log-earnings\") /// // axis titles\n",
" xtitle(\"Year\") ///\n",
" legend( /// // legend labels\n",
" label(1 \"Treated\") ///\n",
" label(2 \"Control\") ///\n",
" )"
],
"id": "fc80e612"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The comments in this example might seem unnecessary since the code is\n",
"self-explanatory. However, depending on our familiarity with Stata (or\n",
"coding in general) and the complexity of the code, adding comments that\n",
"seem obvious at the time can be helpful when we revisit work days or\n",
"weeks later. As students of economics, we understand that there is an\n",
"opportunity cost to everything, including time spent deciphering code we\n",
"have already written.\n",
"\n",
"## 18.5 More on Project Settings (optional)\n",
"\n",
"Our workflow can be simplified by defining project settings in the\n",
"master do-file that determine which do-files are run and whether or not\n",
"log-files are generated. We can think of project settings as a series of\n",
"switches that we can switch on and off in our work. For example, we\n",
"could turn the switch to “off” for the do-file that builds the data when\n",
"the data has already been fully processed and saved in our folder, or we\n",
"could turn the switch to “on” to create a log-file when we want to keep\n",
"a record of the run of the do-file.\n",
"\n",
"If we choose to include project settings in our master do-file, we will\n",
"need to include specific lines of codes in the project settings and in\n",
"the *run* settings of the master do-file, as well as in the *store_log*\n",
"settings of specific do-files. We will see each of the three components\n",
"below.\n",
"\n",
"### 18.5.1 Project Settings\n",
"\n",
"For each step of the process settings, we will create globals to do the\n",
"following:\n",
"\n",
"1. *Run* globals that will switch on and off the running of certain\n",
" do-files (`run_build`, `run_descriptive`, `run_mainresults`)\n",
"2. *Store* globals that will switch on and off the creation of\n",
" log-files (`store_log_build`, etc.).\n",
"\n",
"These process settings will look like this:"
],
"id": "683dfb0f-611c-4b36-88c2-fc6bbbc9df1b"
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"*******************\n",
"* Project Settings:\n",
"*******************\n",
"\n",
"*Step 1: Build intermediate and final data set from raw data\n",
"\n",
"global run_build = 1 // 0 = skip build step; 1 = run build.do\n",
"global store_log_build = 1 // 0 = don't save log file; 1 = save log file\n",
"\n",
"\n",
"*Step 2: Run descriptive analysis\n",
"\n",
"global run_descriptive = 1 // 0 = skip; 1 = run\n",
"global store_log_descriptive = 1 // 0 = don't save log file; 1 = save log file\n",
"\n",
"\n",
"*Step 3: Run main results (e.g. regressions)\n",
"\n",
"global run_mainresults = 1 // 0 = skip; 1 = run\n",
"global store_log_mainresults = 1 // 0 = don't save log file; 1 = save log file"
],
"id": "48adc99e"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"At this stage, our settings don’t mean much; we have simply created\n",
"globals and assigned them a specific value. When we reference these\n",
"globals in our master do-file and in other do-files, these settings will\n",
"become meaningful. The values we choose to assign these globals will\n",
"determine which actions occur and which don’t.\n",
"\n",
"`run` settings are referenced in two cases:\n",
"\n",
"1. In the master do-file under the “run project” section.\n",
"2. In the beginning of the project do-files, when required.\n",
"\n",
"`store_log` settings are referenced in two cases:\n",
"\n",
"1. Always at the beginning of the project do-files (excluding the\n",
" master do-file).\n",
"2. Always at the end of the project do-files (excluding the master\n",
" do-file).\n",
"\n",
"These will be discussed in more detail below.\n",
"\n",
"### 18.5.2 *run* settings\n",
"\n",
"Let’s consider how we might now run our do-files in the master do-file\n",
"if we are using the `run` settings."
],
"id": "124e0409-9965-4378-8116-81315cfecaed"
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"******************\n",
"* Run the do-files\n",
"******************\n",
"\n",
"if ${run_build}==1{\n",
" do \"${do_dir}/1_build_data.do\"\n",
"}\n",
"\n",
"\n",
"if ${run_descriptive}==1{\n",
" do \"${do_dir}/2_descriptive.do\"\n",
"}\n",
"\n",
"\n",
"if ${run_mainresults}==1{\n",
" do \"${do_dir}/3_results.do\"\n",
"}"
],
"id": "ad984d89"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is almost the same as the code block we saw earlier to run all our\n",
"do-files. The key difference is that each command is nested within an\n",
"`[if]` statement.\n",
"\n",
"The `[if]` statements correspond to the global settings: IF the\n",
"statement `${some_global}==1` is TRUE, THEN run the command in the curly\n",
"brackets, which is `do \"filename\"`. Can you guess what happens if the\n",
"statement is FALSE?\n",
"\n",
"There’s one missing piece in this story. The comments in the settings\n",
"say that assigning a value of `0` to a global skips that action. You may\n",
"have noticed, however, that the `[if]` statement would return as FALSE\n",
"for any value of `global run_build` as long as it is not equal to 1.\n",
"\n",
"We could set `global run_build = 8` and Stata would still return the\n",
"statement `${run_build}==1` as FALSE. The question remains: when does\n",
"`0` become relevant?\n",
"\n",
"To understand this, we have to think of our master do-file as a very\n",
"long script that links all the other do-files together. Let’s consider a\n",
"scenario where we want to skip the build step. This means our script\n",
"begins with `2_descriptive.do`; however, `2_descriptive.do` includes\n",
"commands to work with the data set we opened in `1_build_data.do`. Note\n",
"that we don’t open the data set in the beginning of each do-file over\n",
"and over again. This means we need to add a condition in the beginning\n",
"of the `2_descriptive.do` script where we open the correct data set in\n",
"the event we skip the first step."
],
"id": "698f1b82-1600-43a6-b9ac-ba72b1c5d3d4"
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"if ${run_build}==0 {\n",
" use \"${datadir}/final/main_data.dta\", clear\n",
"}"
],
"id": "926101e6"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This clearly defines a situation where, if we skip the build data step,\n",
"then we load the correct data set in Stata to run `2_descriptive.do` .\n",
"\n",
"Similarly, if we were to skip the first two steps, then we would have to\n",
"load the correct data set to run the results (i.e. step 3). We include\n",
"the following command in the beginning of `3_results.do` to address this\n",
"problem."
],
"id": "367eedce-8a67-479c-8c6d-a1e23a7d3615"
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"if ${run_build}==0 & ${run_descriptive}==0 {\n",
" use \"${datadir}/final/main_data.dta\", clear\n",
"}"
],
"id": "08fa6b88"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As you might have noticed, all scenarios where we skip a step are\n",
"associated with `if ${some_global}==0`. As a result, we limit the values\n",
"assigned to the global settings to 0 and 1.\n",
"\n",
"### 18.5.3 *store_log* settings\n",
"\n",
"Now let’s take a look at the `store_log` settings, which help us\n",
"automate the process of storing log-files.\n",
"\n",
"Imagine that all do-files except `0_master.do` include the `log` command\n",
"in the beginning and end of the file. The `log` command is nested within\n",
"an `[if]` statement related to the global settings, exactly like we saw\n",
"earlier."
],
"id": "661204d3-bde1-462f-b9c9-43de8b25bfec"
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"%%stata\n",
"*If log setting is activated, we record a log file in the log folder\n",
"if ${store_log_descriptive}==1 {\n",
" cap log close\n",
" log using \"${log_dir}/2_descriptive.log\", replace\n",
"}\n",
"\n",
"*Close log if needed\n",
"if ${store_log_descriptive}==1 {\n",
" cap log close\n",
"}"
],
"id": "3c6b48ac"
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First, we start with an `[if]` statement which makes our global settings\n",
"viable. Within the curly brackets we include `cap log close` to ensure\n",
"that any open log-files from prior attempts are closed before we open\n",
"the log-file. Then we use\n",
"`log using \"${log_dir}/2_descriptive.log\", replace` which generates a\n",
"log-file stored in the log directory `log_dir` (we defined this in the\n",
"master file) and saves it under the name `2_descriptive.log`. Finally,\n",
"at the end of the script, we include a command to close the log-file.\n",
"\n",
"We include this code within each of the do-files, only changing the\n",
"`store_log` global and the name of the log-file to match the appropriate\n",
"step.\n",
"\n",
"## 18.6 Wrap Up\n",
"\n",
"In this notebook, we looked at how to use UBC OneDrive to securely store\n",
"projects. We explored how to structure a project directory, how to name\n",
"files, and how to separate scripts. We also discussed important file\n",
"types to include and best practices for coding more generally. Finally,\n",
"we looked at how to use globals to improve the functionality of our\n",
"master do-file."
],
"id": "cfc387d5-9872-4110-b3bb-089b65c1e457"
}
],
"nbformat": 4,
"nbformat_minor": 5,
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"path": "/usr/local/share/jupyter/kernels/python3"
},
"language_info": {
"name": "python",
"codemirror_mode": {
"name": "ipython",
"version": "3"
},
"file_extension": ".py",
"mimetype": "text/x-python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
}
}